Биологическая роль фосфора – Фосфор — биологическая роль

Содержание

Фосфор — биологическая роль

Обратно в Витамины и минералы

Обмен веществ

Баланс PH

Работа сердца

Рост и развитие

Иммунитет

Костные ткани

Центр. нервная система

Дневная норма потребления

 

Мужчины

800

мг

 

Мужчины старше 60 лет

800

мг

 

Женщины

800

мг

 

Женщины старше 60 лет

800

мг

 

Беременные (2-я половина)

1000

мг

 

Кормящие (1-6 мес.)

1000

мг

 

Кормящие (7-12 мес.)

1000

мг

 

Младенцы (0-3 мес.)

300

мг

 

Младенцы (4-6 мес.)

400

мг

 

Младенцы (7-12 мес.)

500

мг

 

Дети (1-3 года)

700

мг

 

Дети (3-7 лет)

800

мг

 

Дети (7-11 лет)

1100

мг

 

Мальчики (11-14 лет)

1200

мг

 

Девочки (11-14 лет)

1200

мг

 

Юноши (14-18 лет)

1200

мг

 

Девушки (14-18 лет)

1200

мг


Фосфор относится к структурным (тканеобразующим) макроэлементам, его содержание в организме взрослого человека составляет около 700 г.

Большая часть фосфора (85-90%) находится в костях и зубах, остальное – в мягких тканях и жидкостях. Около 70% общего фосфора в плазме крови входит в органические фосфолипиды, около 30% — представлено неорганическими соединениями (10% соединения с белком, 5% комплексы с кальцием или магнием, остальное – анионы ортофосфата).

Биологическая роль фосфора

  • фосфор входит в состав многих веществ организма (фосфолипиды, фосфопротеиды, нуклеотиды, коферменты, ферменты и пр.)
  • фосфолипиды являются основным компонентом мембран всех клеток в организме человека
  • в костях фосфор находится в виде гидроксилапатита, в зубах в виде фторапатит, выполняя структурную функцию
  • остатки фосфорной кислоты входят в состав нуклеиновых кислот и нуклеотидов, а также в состав аденозинтрифосфорной кислоты (АТФ) и креатинфосфата – важнейшие аккумуляторы и переносчики энергии
  • остатки фосфорной кислоты входят в состав буферной системы крови, регулируя ее значение рН

Какие продукты содержат фосфор


Наиболее важными источниками фосфора являются продукты с высоким содержанием белка (мясо, молоко, яйца и злаковые – составляют 60% всего потребляемого фосфора, еще 20% это злаковые и бобовые; 10% – фрукты и соки, 7% — напитки). Также важным источником фосфора является рыба. Следует отметить, что усвояемость фосфора из зерновых продуктов невысока в связи с большим содержанием фитиновых соединений.

Дефицит фосфора


Причины дефицита фосфора


  • период активного роста детей
  • у женщин в период лактации (ежедневно с молоком выводится до 160 мг фосфора)
  • недостаточное поступление с пищевыми продуктами (малое потребление белка)
  • избыток соединений магния, кальция, алюминия
  • различные хронические заболевания
  • наркомания, алкоголизм
  • болезни почек, щитовидной и паращитовидных желез
  • искусственное вскармливание детей

Последствия дефицита фосфора


  • снижение внимания, слабость, повышенная утомляемость
  • остеопороз, боли в мышцах
  • нарушения функции печени
  • угнетение иммунитета, иммунодефицитные состояния
  • дистрофические изменения в миокарде
  • кровоизлияния на коже и слизистых оболочках

Избыток фосфора


Встречается редко — важно соблюдение оптимального соотношения фосфора с кальцием (1:1).

Чрезмерное количество фосфора особо опасно для детей в первые месяцы жизни, что может привести к нефропатии.

Причины избытка фосфора


  • избыточное поступление фосфора (например, при чрезмерном потреблении белка)
  • работа во вредных условиях труда

Последствия избытка фосфора


  • отложение фосфора в различных тканях в виде фосфатов
  • почечнокаменная болезнь
  • патология печени
  • расстройства желудочно-кишечного тракта
  • кровотечения, кровоизлияния, анемия
  • декальцинация костной ткани

Суточная потребность в фосфоре: 800 мг 




Обратно в Витамины и минералы

moydietolog.ru

Фосфор биологическая роль — Справочник химика 21





    Соединения фосфора играют важную роль в биологических системах. Этот элемент входит, например, в состав фосфатных групп молекул РНК и ДНК, ответственных за биосинтез белков и передачу наследственной информации. Он входит также в состав молекул аденозинтрифосфата (АТФ), при помощи которых запасается энергия в биологических клетках  [c.326]








    Какова роль фосфора в биологических процессах  [c.75]

    Какова биологическая роль фосфора  [c.301]

    Для поддержания жизни, как показано в настоящее время, существенное значение имеют около 20 элементов, хотя живая ткань часто содержит в следовых количествах все элементы, находящиеся в окружающей среде. Основные элементы живых систем — это водород, углерод, азот и кислород (2—60 ат. %). Установлено, что из всех элементов, присутствующих в следовых количествах (0,02—0,1 ат. %), фосфор, сера, хлор, натрий, калий, магний и кальций необходимы для поддержания процессов жизнедеятельности. Некоторые из элементов, присутствующих в сверхмалых количествах (менее 0,001 ат. %), также относятся к числу необходимых. Это марганец, железо и медь. Весьма вероятно, что ванадий, кобальт, молибден, бор и кремний также имеют общее биологическое значение, однако показать, что тот или иной элемент, присутствующий в сверхмалых количествах, биологически необходим, часто весьма трудно. В отдельных случаях биологическая роль элемента для растений и животных может быть установлена по тем последствиям, которые вызывает его отсутствие в почве. Так, отсутствие меди в почве некоторых районов Австралии вызвало нарушения в нервной системе овец и привело к заболеванию их анемией и к выпадению шерсти. Утверждалось также, что недостаток в почве бора приводит к аномалиям в развитии свеклы и сельдерея и к ухудшению качества [c.7]

    Азот, фосфор и мышьяк играют большую роль в биологических процессах, поэтому рассмотрены более подробно. [c.223]

    Органические и минеральные азотные удобрения обогащают почву азотом и зольными элементами и значительно усиливают процессы минерализации в ней. С органическими удобрениями вносится не только органическое вещество, стимулирующее жизнедеятельность микроорганизмов, но и разнообразная микрофлора (например, с навозом), ускоряющая разложение органического вещества почвы. Минеральные удобрения повышают интенсивность биологических процессов в почве, так как являются источником питания микробов азотом, фосфором, калием, кальцием и другими элементами. В круговороте азота в земледелии процессы нитрификации наряду с положительным значением играют и отрицательную роль, так как нитраты могут не только накопляться в почве, но вследствие своей подвижности и вымываться из нее. [c.179]

    Фосфор необходим для образования костной ткани, где он находится главным образом в форме Саз(Р04)г. Соединения фосфора, например креатинфосфат, по-видимому, имеют значение для процессов сокращения мышц и углеводного обмена. Фосфаты играют также важную роль в регулировании pH крови. Небольшие количества фосфора часто определяют в сыворотке крови, в тканях и других биологических объектах. [c.9]

    Как важнейшая составная часть этих наиболее сложных органических веществ фосфор играет в жизненном процессе совершенно исключительную роль. Биологическое значение органических фосфорных соединений и их химическое строение были уже рассмотрены. Часть неорганического фосфата, циркулирующего в теле, связана с белками плазмы и в этой форме осмотически неактивна. [c.390]

    Следовательно, в растениях фосфор входит в состав многих органических биологически важных веществ, без которых невозможна жизнедеятельность организмов. Но этим роль фосфора не исчерпывается. Для осуществления [c.232]

    Биологическое поглощение играет особенно большую роль в превращении нитратных соединений азота и нитратных форм азотных удобрений в почве. Легкорастворимые соли азотной кислоты, не усвоенные растениями, удерживаются в почве и предохраняются от вымывания главным образом благодаря усвоению их микроорганизмами, так как ни физически, ни физико-химически, ни химически они не поглощаются в почве. Биологическое поглощение азота, фосфора, серы и других питательных веществ микробами — [c.101]

    ФОСФАТШЛАК МАРТЕНОВСКИЙ, фосфорное удобрение отход мартеновского способа получения стали из богатых фосфором чугунов. Не раств. в воде. Содержит не манее 10% PiOs, а также Fe, Mg, Мп я нек-рые др. элементы. Нейтрализует почву. Примея. как местное осн. удобрение с высоким эффектом на почвах нечерноземной зоны, а также па выщелоченных и оподзоленных черноземах. ФОСФАТЫ НЕОРГАНИЧЕСКИЕ, соли фосфорных к-т. Подобно к-там, различают ортофосфаты, молекулы к-рых содержат один атомР в изолиров. тетраэдре РО4, н конденсированные Ф. н., молекулы к-рых содержат два (.пирофосфаты) и более атомов Р, образующих связи Р—О—Р в результате соединения тетраэдров POi через атомы О (см. Полифосфаты и Ультрафосфаты). Ф. н. играют важную роль в энергетике всех живых организмов (напр., АТФ), а также в синтезе мн. биологически активных в-в (нуклеиновых к-т и др.). [c.627]

    Основная масса фосфора микробных клеток находится в сложных белках — нуклеопротеидах, составляющих свыше 40—50% белков микробной клетки. Минеральные вещества в микробных клетках выполняют ту же роль, что и у высших растений. Они входят в состав протоплазмы, используются на построение ферментов и других биологически важных веществ и являются источниками энергии у анаэробов. [c.296]

    Фосфор. Фосфор содержится в организме в виде фосфорнокислых солей и, кроме того, входит в состав нуклеопротеидов, фосфопротеидов, фосфатидов и других биологически важных соединений. Фосфорная кислота имеется во всех органах и играет большую роль в обмене углеводов, белков и жиров. [c.241]

    Но если процесс биологического поглощения питательных веществ микроорганизмами выражен слишком сильно, то это может неблагоприятно отразиться на питании культурных растений. Интенсивность биологического поглощения зависит от влажности, аэрации и других свойств почвы, а также от количества и состава органических веществ в ней, служащих энергетическим материалом для микроорганизмов. Так, при внесении в почву значительного количества богатого клетчаткой, но бедного азотом, органического вещества (соломы или сильно соломистого навоза) микроорганизмы, используя клетчатку в качестве энергетического материала и разлагая эти органические вещества, будут быстро размножаться, потреблять много растворимых минеральных соединений азота из почвенного раствора. В результате ухудшится питание растений азотом и снизится урожай. Аналогичные процессы могут происходить также с фосфором, серой и другими необходимыми для растений элементами. Таким образом, в зависимости от конкретных условий биологическое поглощение питательных веществ микроорганизмами может иметь положительное значение или же играть отрицательную роль в питании растений. [c.109]

    Биологическая роль фосфора весьма многогранна. Как уже отмечалось, фосфор участвует

www.chem21.info

Биологическое значение фосфора




⇐ ПредыдущаяСтр 6 из 6

Соединения фосфора присутствуют в каждой клеточке тела и участвует практически во всех физиологических химических реакциях.

Значение фосфора

  • фосфор входит в состав нуклеиновых кислот, которые принимают участие в процессах роста, деления клеток, хранения и использования генетической информации
  • фосфор содержится в составе костей скелета (около 85% от общего количества фосфора организма)
  • фосфор необходим для нормальной структуры зубов и десен
  • обеспечивает правильную работу сердца и почек
  • фосфор участвует в процессах накопления и освобождения энергии в клетках
  • участвует в передаче нервных импульсов
  • помогает обмену жиров и крахмалов.

Неорганический элемент фосфор, Р, находится в организме человека в виде соединений фосфора — неорганических фосфатов и липидов или нуклеотидов.

Содержание фосфора в организме регулирует паратгормон, кальцитонин и витамин Д.

Фосфор и продукты питания

В организм человека фосфор Р поступает с пищей. Фосфор содержится в следующих продуктах питания: в рыбе, мясе, птице, неочищенных зернах, яйцах, орехах, семечках.

Для правильного функционирования фосфора важно достаточное количество кальция и витамина D в организме. Соотношение Са (кальция) и фосфора (Р) должно быть два к одному. Переизбыток железа, алюминия и магния делает влияние фосфора неэффективным.

Норма фосфора в крови

Возраст Норма фосфора, ммоль/л
До 2 лет 1,45 -2,16
2 года — 12 лет 1,45 — 1,78
12 — 60 лет 0,87 — 1,45
Женщины старше 60 лет 0,90 — 1,32
Мужчины старше 60 лет 0,74 — 1,2

Рекомендуемая Дневная Норма Потребления (РНП) фосфора у взрослых — 800 — 1.200 мг. Беременные и кормящие женщины должны увеличивать суточную норму фосфора, поскольку для этого периода характерен физиологический недостаток фосфора в организме.

Определение фосфора в биохимическом анализе крови— необходимый этап диагностикизаболеваний костей, почек, паращитовидных желез.

Избыток фосфора в крови, или гиперфосфатемия, может вызвать следующие процессы:


  • разрушение костной ткани (опухоли, лейкоз, саркоидоз)
  • избыток витамина Д
  • заживление переломов костей
  • снижение функции паращитовидных желез (гипопаратиреоз)
  • острая и хроническая почечная недостаточность
  • остеопороз
  • ацидоз
  • цирроз.

Обычно фосфор выше нормы вследствие приема противоопухолевых средств, при этом происходит высвобождение фосфатов в кровь.

Недостаток фосфора необходимо регулярно восполнять, употребляя в пищу содержащие фосфор продукты.

Значительное снижение уровня фосфора в крови — гипофосфатемия — симптом следующих заболеваний:

  • недостаток гормона роста
  • дефицит витамина D(рахит)
  • пародонтоз
  • нарушение всасывания фосфора, тяжелый понос, рвота
  • гиперкальциемия
  • повышенная функция паращитовидных желез (гиперпаратиреоз)
  • подагра
  • гиперинсулинемия (при лечении сахарного диабета).

Фолиевая кислота.

Фолиевая кислота (Folic Acid, фолацин) — водорастворимый витамин группы В.

Для чего нужна фолиевая кислота в организме человека?

  • фолиевая кислота необходима для нормального кроветворения
  • вместе с витамином В12 фолиевая кислота необходима для деления клеток, что особенно важно для тканей, которые активно делятся и дифференцируются
  • фолацин способствует усвоению, транспорту и распаду белков, способствует соединению белковой группы и гема в гемоглобине и миоглобине
  • стимулирует пластические и регенераторные процессы во всех органах и тканях
  • фолиевая кислота необходима для усвоения сахара и аминокислот
  • важна для образования нуклеиновых кислот (РНК и ДНК), участвующих в передаче наследственных признаков
  • фолацин предупреждает развитие атеросклероза, обладает анальгетическим действием
  • улучшает выделение молока
  • назначение фолиевой кислоты — и защита от кишечных паразитов и пищевых отравлений
  • фолиевая кислота обеспечивает здоровый вид кожи, улучшает аппетит
  • действует как профилактическое средство от язвенного стоматита.

Норма фолиевой кислоты в сыворотке крови — 3 — 17 нг/мл.



Рекомендуемая Дневная Норма Потребления (РНП) — суточная доза фолиевой кислоты для взрослых — 400 мкг. Во время беременности суточная норма фолиевой кислоты у женщин удваивается до 800 мкг.

Источник фолиевой кислоты — микрофлора кишечника.

Фолиевая кислота содержится в большом количестве в листьях зеленых растений. Отсюда этот витамин, фолиевая кислота, и получил свое название от латинского слова «фолиум» — лист.

Продукты фолиевой кислоты: темно-зеленые овощи с листьями (шпинат, салат-латук, спаржа), морковь, дрожжи, печень, яичный желток, сыр, дыня, абрикосы, тыква, авокадо, бобы, цельная пшеничная и темная ржаная мука. Прием фолиевой кислоты с продуктами может быть нейтрализован при одновременном приеме эстрогенов и при тепловой обработке (варке) продуктов.

Норма фолиевой кислоты в сыворотке крови, ее уровень, зависит от поступления фолиевой кислоты с пищей, употребления продуктов, содержащих фолиевую кислоту. Запасы фолиевой кислоты содержатся в организме — в печени, эритроцитах и лейкоцитах. Но дозировка фолиевой кислоты в этих органах невелика. Вследствие этого дефицит фолиевой кислоты может возникнуть уже через месяц после прекращения поступления фолиевой кислоты с продуктами питания. Уже через 4 месяца недостаток дозы фолиевой кислоты приводит к развитию В12-фолиево дефицитной анемииили мегалобластной анемии: развивается нарушение образования эритроцитов в костном мозге (так называемых мегалобластов). Это нарушение приводит к выходу в кровь гигантских незрелых эритроцитов и снижению гемоглобина в крови.

Кроме того, и для женщин и для мужичин фолиевая кислота в недостаточном содержании- признак серьезных нарушений:

  • недостаточное питание
  • нарушение всасывания фолиевой кислоты (резекция желудка и кишечника)
  • дефицит витамина В12
  • алкоголизм
  • лихорадка
  • гемолитическая анемия
  • злокачественные опухоли
  • гипертиреозу детей
  • заболевания печени
  • анорексия.

Уровень фолиевой кислоты в сыворотке крови снижают медицинские препараты (аспирин, бисептол, противосудорожные средства, эстрогены, контрацептивы и др.).

Повышение фолиевой кислоты происходит при вегетарианской диете, заболеваниях тонкого кишечника.

Беременность и фолиевая кислота

Дефицит фолиевой кислоты — самый распространенный гиповитаминоз среди беременных, новорожденных и детей раннего возраста. При чем недостаток фолиевой кислоты передается от матери к плоду или новорожденному ребенку вследствие недостаточного содержания фолиевой кислоты при беременности в организме матери и нехватки фолиевой кислоты в молоке.

Недостаточная фолиевая кислота во время беременности в организме матери может привести различным негативным последствиям:

  • невынашивание беременности
  • частичная или полная отслойка плаценты
  • спонтанный аборт и рождение мертвого ребенка
  • врожденные пороки у плода
  • задержка умственного развития.

При недостатке фолиевой кислоты беременные женщины также расплачиваются различными недомоганиями:

  • токсикоз
  • депрессия
  • боли в ногах
  • анемия.

Для сохранения беременности, здоровья матери и рождения здорового ребенка врачи назначают прием фолиевой кислоты в таблетках при планировании беременности и в течение срока вынашивания. Но принимать фолиевую кислоту нужно строго в дозировке фолиевой кислоты, назначенной Вам врачом. Передозировка фолиевой кислоты не менее опасна для здоровья, чем недостаток.

Фракции остаточного азота

Низкомолекулярные азотистые вещества представлены, главным образом, продуктами обмена белков и нуклеиновых кислот. Эти вещества остаются в надосадочной жидкости или фильтрате после осаждения крупномолекулярных белков и составляют остаточный азот крови. Основными фракциями остаточного азота являются мочевина(примерно 50%), аминокислоты(около 25%), креатини креатинин(7,5%), полипептиды, нуклеотидыи азотистые основания (5%), мочевая кислота (4%), аммиаки индикан(0,5%).

Увеличение фракций остаточного азота (азотемия) по своему характеру может быть абсолютным, связанным с действительным накоплением азотистых компонентов в крови, и относительным, связанным с дегидратацией. В свою очередь, абсолютная азотемия может быть ретенционная (почечного происхождения) и продукционная. Ретенционная возникает в результате задержки выведения и различается на азотемии почечного происхождения (заболевания клубочков — нефриты, туберкулез почек, нефросклероз и т.д.) и внепочечного происхождения. Внепочечные в свою очередь подразделяются на надпочечные (результат нарушений гемодинамики и падения фильтрационного давления при сердечно‑сосудистой недостаточности, снижении артериального давления) и подпочечные (при гипертрофии или аденоме простаты, почечнокаменной болезни). Продукционная азотемия выявляется при всех состояниях, связанных с увеличением распада белка, от ретенционной ее отличает повышение содержания аминокислот в крови, а также одновременное накопление азотистых компонентов в крови и моче.

 

  • Низкомолекулярные азотистые вещества
    • Креатинин
    • Мочевая кислота
    • Мочевина
    • Индикан

Креатинин.

Креатинин — конечный продукт обмена белков. Креатинин образуется в печени и затем выделяется в кровь. Креатинин участвует в энергетическом обмене мышечной и других тканей. Из организма креатинин выводится почкамис мочой, поэтому креатинин — важный показатель деятельности почек.

Содержание креатинина в крови зависит от объема мышечной массы, поэтому, для мужчин норма креатинина, как правило, выше, чем у женщин. Так как объем мышечной ткани быстро не меняется, уровень креатинина в крови — величина достаточно постоянная.

Норма креатинина в крови женщины: 53—97 мкмоль/л, мужчины— 62—115 мкмоль/л. Длядетей до 1 годанормальный уровень креатинина — 18—35 мкмоль/л, от года до 14 лет — 27—62 мкмоль/л.

Определение креатинина используется в диагностике состояния почек и скелетных мышц.

Повышение креатинина — симптом острой и хронической почечной недостаточности, лучевой болезни, гипертиреоза. Уровень креатинина возрастает после приема некоторых медицинский препаратов, при обезвоживании организма, после механических, операционных поражений мышц. Также повышенный креатинин возможен в крови человека, в чьем рационе преобладает мясная пища.

Анализ креатинина может показать снижение креатинина в крови, которое происходит при голодании, вегетарианской диете, снижении мышечной массы, в I и II триместре беременности, после приема кортикостероидов.

Мочевая кислота.

Мочевая кислота выводит избыток азота из организма человека. Мочевая кислота синтезируется в печени и в виде соли натрия содержится в плазме крови.

За выведение мочевой кислоты из крови человека отвечают почки. При нарушении деятельности почек, происходит нарушение обмена мочевой кислоты. Как следствие — накопление в крови солей натрия, уровень мочевой кислоты растет, вызывая разнообразные повреждения органов и тканей.

Норма мочевой кислоты для детей до 14 лет — 120 — 320 мкмоль/л, для взрослых женщин — 150 — 350 мкмоль/л. Для взрослых мужчин норма уровня мочевой кислоты — 210 — 420 мкмоль/л.

Причины повышения мочевой кислоты

Повышение мочевой кислоты или гиперурикемия — основной симптом первичной и вторичной подагры.

В диагностике подагры анализ мочевой кислоты имеет важное значение. Поскольку первичная подагра может протекать бессимптомно, проявляясь только в повышении уровня мочевой кислоты. Вторичная подагра может быть вызвана нарушениями в работе почек, злокачественными образованиями, разрушениями тканей или голоданием. Первичная подагра развивается на фоне замедления вывода мочевой кислоты из организма или при преизбыточном синтезе мочевой кислоты. Кристаллы мочевой кислоты могут откладываться в суставах, подкожной клетчатке, почках. В результате развивается подагра, хронический артрит.

Гиперурикемия вследствие вторичной подагры наблюдается при таких заболеваниях, как:

  • лейкоз, лимфома
  • анемия, вызванная дефицитом витамина В12
  • некоторые острые инфекции (пневмония, скарлатина, туберкулез)
  • заболевания печени и желчных путей
  • сахарный диабет
  • хроническая экзема
  • псориаз
  • крапивница
  • заболевания почек
  • токсикоз у беременных
  • ацидоз
  • вторичная «подагра алкоголика» (острое алкогольное отравление).

Уровень мочевой кислоты в крови повышается после физической нагрузки, приема алкоголя и при длительном голодании. Рост содержания мочевой кислоты может быть у людей, чья пища богата жирами и углеводами.

Снижение уровня мочевой кислоты (гипоурикемия) наблюдается при:

  • болезнь Вильсона-Коновалова
  • синдром Фанкони
  • диета, бедная нуклеиновыми кислотами

На понижение или повышение мочевой кислоты может оказать влияние прием некоторых медицинский препаратов (диуретиков и др.).

Мочевина

Мочевина — активное вещество, основной продукт распада белков. Мочевина вырабатывается печенью из аммиака и участвует в процессе концентрирования мочи.

В процессе синтеза мочевины обезвреживается аммиак — очень ядовитое вещество для человека. Из организма мочевина выводится почками. Соответственно если из крови мочевина выводится плохо, то это означает нарушение выделительной функции почек.

Норма мочевины у детей до 14 лет — 1,8–6,4 ммоль/л, у взрослых — 2,5–6,4 ммоль/л. У людей старше 60 лет норма мочевины в крови — 2,9–7,5 ммоль/л.

Повышенная мочевина в крови человека — симптом серьезных нарушений в организме:

  • заболевания почек (гломерулонефрит, пиелонефрит, туберкулез почек)
  • сердечная недостаточность
  • нарушение оттока мочи (опухоль мочевого пузыря, аденома простаты, камни в мочевом пузыре)
  • лейкоз, злокачественные опухоли
  • сильные кровотечения
  • кишечная непроходимость
  • шок, лихорадочное состояние
  • ожоги
  • непроходимость мочевыводящих путей
  • острый инфаркт миокарда.

Повышение мочевины происходит после физической нагрузки, вследствие приема андрогенов, глюкокортикоидов.

Анализ мочевины в крови покажет снижение уровня мочевины при таких нарушениях работы печени, как гепатит, цирроз, печеночная кома. Снижение мочевины в крови происходит при беременности, отравлении фосфором или мышьяком.

Концентрация мочевины в крови человека может зависеть от его питания. При употреблении белковой пищи (мясо, рыба, яйца, молочные продукты) анализ мочевины покажет ее рост в крови. При употреблении растительной пищи — анализ покажет снижение уровня мочевины.

 

Индикан

Индикан представляет собой калиевую или натриевую соль индоксилсерной кислоты, образующейся в печени при обезвреживании индола.Индол появляется в кишечнике при гниении белков из аминокислоты триптофана. Кроме индоксилсерной кислоты в печени образуется и индоксил­глюкуроновая кислота. Оба производных индола водорастворимы и удаляются с мочой.

 

Пять фракций белков

Плазма крови человека в норме содержит более 100 видов белков. Примерно 90% всего белка крови составляют альбумины, иммуноглобулины, липопротеины, фибриноген, трансферрин; другие белки присутствуют в плазме в небольших количествах.

Синтез белков плазмы крови осуществляют:

  • печень – полностью синтезирует фибриноген и альбумины крови, большую часть α- и β-глобулинов,
  • клетки ретикулоэндотелиальной системы (РЭС) костного мозга и лимфатических узлов – часть β-глобулинов и γ-глобулины (иммуноглобулины).

Существует довольно много различных методов разделения белков в зависимости от их некоторых качеств. Наиболее распространенным методом фракционирования белков крови является электрофорез..

Электрофорез белков

Ацетатцеллюлозная пленка, гель, специальная бумага (носитель) помещается на рамку, при этом противоположные края носителя свисают в кюветы с буферным раствором. На линию старта наносится сыворотка крови. Метод заключается в движении заряженых молекул белка по поверхности носителя под влиянием электрического поля. Молекулы с наибольшим отрицательным зарядом и наименьшим размером, т.е. альбумины, двигаются быстрее остальных. Наиболее крупные и нейтральные (γ-глобулины) оказываются последними.

На ход электрофореза влияет подвижность разделяемых веществ, находящаяся в зависимости от ряда факторов: заряд белков, величина электрического поля, состав растворителя (буферной смеси), тип носителя (бумага, пленка, гель).

Общий вид электрофореза

Количество выделяемых фракций определяется условиями проведения электрофореза. При электрофорезе на бумаге и пленках ацетата целлюлозы в клинико-диагностических лабораториях выделяют 5 фракций (альбумины, α1-, α2-, β- и γ-глобулины), в то время как в полиакриламидном геле – до 20 и более фракций. При использовании более совершенных методов (радиальная иммунодиффузия, иммуноэлектрофорез и других) в составе глобулиновых фракций выявляются многочисленные индивидуальные белки.



Рекомендуемые страницы:

lektsia.com

Фосфор в организме человека

Фосфор (phosphorus) — это один из самых распространенных химических элементов на нашей планете. Фосфор составляет 0,08 — 0,09 % от массы Земной коры.

Фосфор играет важную биологическую роль и служит строительным материалом для многих клеток живых организмов. В растительном мире он содержится во всех растениях. Наибольшая концентрация наблюдается в плодах и семенах растений.

В животном мире, фосфор входит в состав белков и многих жизненно важных органических соединений, включая ферменты, нуклеиновые кислоты и так далее. Фосфор содержится в тканях и органах живых организмов, но наибольшее его количество содержится в костной ткани и зубной эмали.

В организме человека в среднем содержится от 500 до 750 грамм фосфора, при этом 90% (фосфат кальция) сконцентрировано в костной ткани. В сочетании с кальцием, фосфор образует минеральные структуры, которые обеспечивают прочность костной ткани и зубной эмали. Фосфор играет важную роль в формировании мышечной ткани и тканей головного мозга, и входит в их состав в качестве строительного материала.

Одна из важных функций фосфора — это его участие в энергетических процессах, протекающих в организме человека.

В тканях живого организма и пищевых продуктах, фосфор содержится в виде фосфорной кислоты и органических соединений фосфорной кислоты (фосфатов).



Участие фосфора в биологических процессах организма

Фосфор не только входит в состав живых клеток в виде строительного материала, он еще принимает участие во многих жизненно важных биологических процессах, протекающих в организме человека:

  • Деление клеток. Фосфор участвует в процессах деления живых клеток и их роста. Он входит в состав нуклеиновых кислот, а также структуру мембран клеток в виде фосфолипидов и фосфопротеинов.
  • Синтез энергии. Фосфор принимает участие в формировании и транспортировки молекул аденозин трифосфата (ATФ), запасающих энергию в нашем организме.
  • Обмен веществ. Фосфор принимает участие в метаболизме и продуцирование углеводов и белков.
  • ЦНС. Фосфор участвует в биологических процессах, обеспечивающих передачу электрических импульсов по волокнам нервов и тканям головного мозга.
  • Баланс фосфора и кальция. Фосфор и кальций тесно взаимодействуют в организме человека и участвуют в формировании одних и тех же биологических структур. В организме человека, с помощью гормонов паращитовидной железы, поддерживается определенный баланс между содержанием фосфора и кальция в тканях и органах. Этот баланс составляет — 2 к 1, две части кальция на одну часть фосфора.
  • Другие функции. Фосфор находится во взаимодействии со многими ферментами, активирует работу витамина D и витаминов группы B. 


Фосфор в продуктах питания

Норма фосфора в сутки – 800 мг, максимально допустимое количество потребления — 1600 мг.

Биодоступность (способность усваиваться организмом) фосфора, поступающего с продуктами питания, не более 70%. Только фосфор рыбы всасывается в кишечнике фактически полностью.

Фосфор содержится в продуктах:

  • молоко, молочные продукты (сыры)
  • мясо, субпродукты (говяжья печень), птица, яйца
  • рыба, икра осетровых
  • хлеб, овсяная и гречневая крупы
  • орехи грецкие, семечки
  • овощи, зелень (тыква, петрушка, капуста, шпинат, чеснок, морковь).


Недостаток фосфора в организме человека

Причины недостатка фосфора:

  • нарушения обмена фосфора
  • неудовлетворительное количество поступления макроэлемента в организм (низкое количество потребления белка)
  • избыточный уровень в организме соединений магния, кальция, бария, алюминия
  • чрезмерное потребление синтетических напитков (газированных и пр.)
  • продолжительные хронические болезни
  • отравления, наркозависимость, алкоголизм
  • патологии щитовидной железы, околощитовидных желез
  • болезни почек
  • вскармливание грудного ребенка искусственными смесями

Симптомы недостатка фосфора:

  • общая слабость, утрата аппетита, истощение
  • боли в мышцах и костях
  • снижается сопротивляемость к инфекциям, простудным заболеваниями; 
  • уменьшается синтез белка печенью
  • появляются дистрофические изменения миокарда, геморрагические высыпания на слизистых оболочках и коже
  • в ряде случаев – нарушения психики
  • рахит, пародонтоз

Когда в организме больше фосфора, чем кальция, организм человека будет использовать кальций, который хранится в костях.


Избыток фосфора в организме человека

Фосфор и фосфаты являются нетоксичными. Летальной дозой для человека считается 60 мг фосфора. Высокой токсичностью обладает ряд соединений фосфора (фосфин). Отравления соединениями фосфора провоцируют нарушения работы почек и печени, сердечно-сосудистой системы, пищеварительного тракта, а также других систем и органов.

Причины избытка фосфора:

  • чрезмерное количество поступления фосфора (избыток белков в продуктах)
  • употребление большого количества консервированной продукции, лимонадов
  • продолжительное взаимодействие с фосфорорганическими соединениями
  • нарушения обмена фосфора

Симптомы избытка фосфора:

  • отложение малорастворимых фосфатов в тканях
  • поражения пищеварительного тракта и печени
  • декальцинация костей (остеопороз)
  • кровоизлияния и кровотечения
  • лейкопения, анемия


Вред фосфатов, применяющихся в пищевой промышленности

В пищевой промышленности применяются фосфаты в продуктах в следующих целях:

  • В качестве подкислителя в газированных напитках
  • Фосфаты сохраняют воду в продуктах питания, повышая его вес и объем, предупреждая формирование бульонно-жировых отёков, в процессе хранения предотвращают высыхание. В основном применяются в продукции из рыбы, птицы и мяса (вареные, варено-копченые колбасы, сардельки)
  • Фосфаты добавляются в сгущенное молоко, помогая предотвратить кристаллизацию продукта.
  • Добавляются в сухие сыпучие продукты, не допуская слеживания и формирования комков в порошке. Применяется в сухих сливках, сухом молоке, порошках, содержащих какао в сухом виде.
  • Добавляются в плавленые сырки, обеспечивая их консистенцию
  • Используются при температурной обработке молока и молочных продуктов 
  • При изготовлении мороженого и других продуктов из сухих смесей фосфаты повышают скорость их растворения при производстве. 
  • Применятся для увеличения срока годности сливочного масла и маргарина

На этикетках можно найти следующие обозначения:

  • Е 340 — фосфаты калия
  • Е 338 — ортофосфорная кислота (или просто фосфорная)
  • Е 343 — фосфаты магния
  • Е 341 — фосфаты кальция
  • Е 342 — фосфаты аммония

Последствия вредного воздействия фосфатов:

  • Избыточное поступление фосфатов в организм человека, нарушает баланс в тканях между фосфором и кальцием, что приводит к нарушению структуры костной ткани и нарушению обменных процессов в организме человека. Избыток фосфора приводит к заболеваниям костной ткани в виде остеопороза.
  • Избыток фосфора приводит к повышению риска сердечно сосудистых заболеваний, повышению риска инфарктов. Это происходит за счет отложения кальция на внутренних стенках сосудов, что приводит к их закупорке. Все это происходит из-за нарушения кальцево-фосфорного баланса.


Взаимодействие фосфора с другими элементами и лекарствами

Фосфор в чистом виде является химически не устойчивым элементом, поэтому легко вступает во взаимодействие с другими веществами. В природе и в нашем организме фосфор содержится в основном в виде химических соединений с другими веществами.

На содержание фосфора и его соединений в нашем организме, могут оказывать влияния различные внешние факторы и другие вещества, поступающие с пищей.

Рассмотрим вещества, которые могут оказать значимое влияние на содержание фосфора в организме человека:

  • Алкоголь может выщелачивать фосфор из костей и снижать его общий уровень в организме
  • Антациды (снижают кислотность желудка), содержащие алюминий, кальций или магний, могут связывать фосфаты в кишечнике. При долгосрочном использовании, эти лекарственные препараты могут привести к снижению содержания фосфора в организме человека (гипофосфатемии).
  • Противосудорожные препараты могут снизить уровень фосфора и увеличение уровня щелочной фосфатазы, фермента, который помогает удалить фосфат из организма.
  • Препараты желчной кислоты снижают уровень холестерина в крови. Они могут уменьшить пероральную абсорбция фосфатов с пищей или добавками. Оральные добавки фосфата должны быть приняты, по крайней мере, за 1 час до или через 4 часа после этих препаратов.
  • Кортикостероиды, в том числе повышают уровень фосфора в моче
  • Калий или препараты с его высоки содержанием, могут привести к слишком большому уровню калия в крови (гиперкалиемия). Гиперкалиемия может вызвать опасные нарушения сердечного ритма (аритмии). Заменители соли, в которых также содержится высокий уровень калия и фосфора, могут привести к снижению их уровня при использовании в долгосрочной перспективе.
  • Ингибиторы АПФ (лекарство от кровяного давления). Это препараты, называемые ангиотензин-превращающим ферментом (АПФ), используемые для лечения высокого кровяного давления, они могут снизить уровень фосфора.
  • Другие медикаменты также могут тоже снижать уровень фосфора. К таким препаратам относятся: циклоспорин (используется для подавления иммунной системы), сердечные гликозиды (дигоксин или Lanoxin), гепарины (разжижающие кровь препараты), а также нестероидные противовоспалительные препараты (например, ибупрофен).

woman.best

Биологическая роль фосфора

Биологическая роль фосфора

Фосфор содержится во всех частях зелёных растений, ещё больше его в плодах и семенах. Высшие организмы используют органический фосфор, получая его из растительных источников с пищей. Фосфор также содержится в животных тканях, входит в состав белков и других важнейших органических соединений, является элементом жизни.

Общее содержание фосфора в организме человека составляет приблизительно 500 г у мужчин и 400 г у женщин.

Фосфор во внеклеточных жидкостях составляет лишь 1% от общего фосфора организма. Большая часть (70%) общего фосфора в плазме обнаружена как составная часть органических фосфолипидов. Однако клинически полезной фракцией в плазме является неорганический фосфор, 10% которого связано с белком, 5% составляют комплексы с кальцием или магнием и большая часть неорганического фосфора плазмы представлена двумя фракциями ортофосфата. Фосфор обнаружен во всех клетках организма. Основные места, содержащие его, это – гидроксиапатит кости и скелетная мускулатура.

Фосфор присутствует в живых клетках в виде орто- и пирофосфорной кислот, входит в состав нуклеотидов, нуклеиновых кислот, фосфопротеидов, фосфолипидов, коферментов, ферментов. Мембраны клетки состоят в значительной степени из фосфолипидов. Кости человека состоят из гидроксилапатита, который представляет собой сложную соль и участвует в белковом обмене. Содержание его в клетках в 50 раз больше, чем в крови. Фосфор в виде фосфатов входит в состав нуклеиновых кислот и нуклеотидов (ДНК, РНК), участвует в процессах кодирования и хранения генетической информации. Соединения фосфора принимают участие в важнейших процессах обмена энергии. Аденозинтрифосфорная кислота (АТФ) и креатинфосфат являются аккумуляторами энергии, с их превращениями связаны мышление и умственная деятельность, энергетическая жизнеобеспеченность организма.

Неорганический фосфат входит в состав буферной системы крови и регулирует ее кислотно-основное равновесие. Этот показатель является очень важным, даже незначительные его изменения могут привести к тяжелым нарушениям в организме. Большая часть фосфора, содержащегося в крови, входит в состав эритроцитов. В состав зубной эмали входит фторапатит. Основную роль в превращениях соединений фосфора в организме человека и животных играет печень. Постоянную концентрацию фосфора в организме обеспечивают витамин D и гормон паращитовидных желез. Невсосавшийся в тонком кишечнике фосфор выводится с мочой (до 60%) и калом.

При недостатке фосфора в организме развиваются различные заболевания костей.

Избыточное поступление фосфора приводит к развитию повышенного содержания фосфора в крови, что провоцирует развитие мочекаменной болезни. Этот факт имеет большое значение у детей младшего возраста, у них органы еще не сформированы до конца и не могут обеспечить его полноценное выведение. При нарушениях обмена фосфора возникает размягчение костной ткани у взрослых и развивается рахит у детей.

 


  • Метаболизм фосфора

Метаболизм фосфора в организме представляет сложное взаимодействие между различными факторами, которые могут затрагивать пищеварение, абсорбцию, распределение и экскрецию его.

Нерастворимые минеральные соли фосфата образуются при повышенном pH. Кислая среда желудка (pH = 2) и большей части проксимального отдела тонкой кишки (pH = 5) может играть важную роль в поддержании растворимости и биодоступности неорганического фосфора. В этом отношении важны потенциальные эффекты гипохлоргидрии (у пожилых и получающих антисекреторную терапию пациентов) на растворимость и биодоступность фосфора.

Приблизительно 60–70% фосфора абсорбируется из обычной смешанной диеты. Показано, что всасывание фосфора находится в диапазоне от 4 до 30 мг/кг массы тела в сутки и связано с его потреблением. Эффективность всасывания фосфора во многом зависит от содержания в рационе кальция. Фосфор работает совместно с кальцием, и их соотношение необходимо держать равным 1:1 по эквиваленту (1:1,5 по массе).

Физиологические состояния, характеризующиеся увеличением потребности в фосфоре (рост, беременность и кормление грудью), сопровождаются соответствующим усилением его абсорбции. У людей старших возрастных групп происходят изменения в экскреции фосфора и адаптации к фосфору пищи. Показано, что, несмотря на потребление рекомендуемой нормы фосфора, отрицательный его баланс наблюдается в возрасте старше 65 лет, за счет потери фосфора с мочой.

Клеточный и молекулярный механизм всасывания фосфора кишкой до конца не изучен. Транспорт фосфора через кишечную клетку – это активный, натрийзависимый путь. Внутриклеточные уровни фосфора относительно высоки. Паратгормон напрямую не регулирует абсорбцию фосфора в кишечнике. Назначение активного метаболита витамина D приводит к увеличению всасывания фосфора и у здоровых, и у пациентов с уремией. Регуляция общего уровня фосфора в организме требует скоординированных усилий почки и кишечника. В условиях низкого потребления фосфора с пищей кишечник увеличивает его всасывание, а почка – почечный транспорт, чтобы минимизировать его мочевые потери. Эта адаптация обеспечивается изменениями в уровне активного метаболита витамина D и паратгормона в плазме. Если адаптивные меры не в состоянии скомпенсировать низкое потребление фосфора, то фосфор кости может перераспределяться в мягкие ткани. Однако эти компенсаторные возможности не безграничны.

Фекальные потери фосфора составляют 0,9–4 мг/кг в день. Основная экскреция происходит через почки в широком диапазоне (0,1–20%). Следовательно, почки обладают способностью эффективно регулировать фосфор плазмы. Скорости почечной реабсорбции регулируется концентрацией фосфора в плазме. Гормональный регулятор почечной реабсорбции фосфора – паратгормон и нефрогенный цАМФ. Концентрация паратгормона плазмы положительно коррелирует с уровнем экскреции фосфора с мочой. Главные признаки потери фосфора с мочой – увеличение абсорбции фосфора и повышение его уровня в плазме. Состояния, которые приводят к гиперфосфатурии – гиперпаратиреоидизм, острый дыхательный или метаболический ацидоз, мочегонные средства и увеличение внеклеточной массы фосфора. Уменьшение выделения фосфора с мочой связано с диетическим ограничением фосфора, увеличением в плазме инсулина, гормона щитовидной железы, роста или глюкагона, алкалозом, гипокалиемией и внеклеточным снижении массы фосфора.

 


  • Потребности организма человека в фосфоре

Установленная норма потребления фосфора для взрослых старше 24 лет – 800 мг.

Среднее ежедневное потребление фосфора составляет приблизительно 1500 мг для мужчин и 1000 мг для женщин. При напряженных физических тренировках потребность в фосфоре может быть существенно увеличена.

 


  • Пищевые источники фосфора

Фосфор широко распространен в пищевых продуктах.

Источники пищи, содержащие много белка (мясо, молоко, яйца и злаковые) имеют высокое содержание фосфора. Относительный вклад основных групп пищи к общему потреблению фосфора приблизительно составляет: 60% – из молока, мяса, домашней птицы, рыбы и яиц; 20% – из злаковых и бобовых; 10% – из фруктов и соков. Алкогольные напитки в среднем поставляют 4% потребляемого фосфора, а другие напитки (кофе, чай, безалкогольные напитки) обеспечивают 3%.

Значительным содержанием фосфора отличаются молочные продукты, в частности сыры (до 60 мг/100 г), а также яйца (в желтке — 470 мг/100 г). Много фосфора в бобовых (в фасоли — 504, горохе — 369 мг/100 г), в хлебе и крупах (200 — 300 мг на 100 г), однако усвояемость фосфора зерновых продуктов низка в связи с большим удельным весом фитиновых соединений. Важным источником фосфора являются мясо и рыба (120 — 140 мг/100 г).

 

  • Токсичность фосфора

Фосфор и фосфаты нетоксичны. Летальная доза для человека: 60 мг Р 4 .

Некоторые соединения фосфора (фосфин) очень токсичны.

 


  • Составные компоненты пищи, влияющие на биодоступность фосфора

Различные диетические компоненты могут ингибировать или увеличивать биодоступность фосфора.

Биодоступность фосфора выше, если он содержится в продуктах животного происхождения, нежели растительного.

Фосфор хорошо абсорбируется из мяса – более 70%, где он представлен, главным образом, в виде внутриклеточных органических соединений. Неорганические фосфаты составляют 1/3 фосфора в молоке; 20% приходится на соединения сложных эфиров с аминокислотами казеина; 40% – на казеиновые. Относительная биодоступность фосфора в молоке составляет 65–90% у младенцев.

В пшенице, рисе и кукурузе более 80% общего фосфора найдено в виде фитиновой кислоты и 35% обнаружено ее в зрелых картофельных клубнях. Люди не обладают ферментом фитазой, необходимой для расщепления фитатов и освобождения фосфора. Но прокариоты (дрожжи и бактерии) содержат фитазу. Это любопытное свойство природы важно для пищевого фосфора по двум причинам. Вначале традиционное использование дрожжей в производстве хлеба приводит к разложению фитата из-за гидролитического действия дрожжей до выпечки. Далее кишечные бактерии способны разложить некоторое количество пищевого фитата.


    • Взаимодействие между нутриентами

Высокий уровень фосфора в молочных смесях, используемых для кормления недоношенных новорожденных, может уменьшать абсорбцию магния. Показано, что фосфор уменьшает всасывание свинца у людей.

Известно, что диета, содержащая ежедневно 2 г кальция, не влияет на всасывание фосфора. Однако высокое содержание в пище кальция и пищевое подавление абсорбции может быть полезным в терапевтических целях для улучшения состояния гиперфосфатемии у пациентов с хронической почечной недостаточностью. Прием с пищей 1000 мг кальция при содержании в ней 372 мг фосфора уменьшает всасывание фосфора, то есть избыточное потребление добавки кальция может оказывать неблагоприятный эффект на баланс фосфора.

Алюминий или магнийсодержащие антациды связывают фосфор в желудочно-кишечном трактате и уменьшают его всасывание.

 

  • Оценка статуса фосфора

Содержание фосфора и фосфатов определяют в крови, моче, проводят изучение активности паратгормона.

Подробнее: Определение фосфора в крови , определение фосфора в моче ,определение паратгормона .

Об избытке фосфора в организме судят по гипертрофии паращитовидных желез, образованию камней в органах мочевыводящей системы, кальцификатов в мягких тканях, а также по развитию остеомаляции и остеопороза. Подробнее: Диагностика остеопороза .

Для оценки статуса фосфора часто используется уровень содержания его в сыворотке крови. Однако этот показатель неадекватен. Лишь 1% общего фосфора организма находится во внеклеточной жидкости. Кроме того, фосфор плазмы жестко регулируем, прежде всего почечной экскрецией. Уровень фосфора в сыворотке крови может быть повышен из-за катаболизма мышц и кости или снижен при быстрых изменениях фосфора во внутриклеточном пространстве.

 

У здоровых людей существует малая вероятность развития дефицита фосфора вследствие его широкой представленности в рационах. Однако недоношенные новорожденные часто склонны к развитию рахита из-за неадекватной поставки фосфора и кальция. Витамин D-независимый гипофосфатемический рахит был впервые описан в 1937 г.

Показано, что явные симптомы дефицита фосфора (анорексия, слабость, боли в костях) не развивались до снижения уровня фосфора сыворотки ниже 1,0 мг/дл. Для достижения такого уровня фосфора в сыворотке необходимо назначение фосфатсвязывающих антацидов. Дефицит фосфора сопровождается снижением его экскреции с мочой и увеличением в моче кальция, магния и калия. Весь кальций и большинство магния при этом поступают из кости.

Недостаток фосфора в организме, прежде всего, ассоциируется с астеническим состоянием, слабостью, недомоганием. В целом же для людей с дисбалансом фосфора характерна повышенная интеллектуальная активность, которая обычно быстро сменяется нервным истощением. Как правило, у таких людей за всплесками эмоциональной реакции на окружающее наступают апатия и депрессия.


    • Причины гипофосфатемии

Причины гипофосфатемии (снижения концентрации фосфора в крови), в зависимости от патогенеза, могут быть сгруппированы в три категории:


      • Быстрое перемещение внеклеточного фосфора во внутриклеточное пространство.

      • Редуцированное кишечное всасывание фосфора.

      • Повышенные кишечные потери и потери с мочой.

Замечено, что гипофосфатемия клинически связана с избыточной массой тела без адекватного поступления фосфора, желудочно-кишечной мальабсорбцией, голоданием, сахарным диабетом, алкоголизмом и дисфункций почечных канальцев.


      • Гипофосфатемия может наблюдаться при хроническом злоупотреблении фосфатсвязывающих антацидов.

 


    • Причины дефицита фосфора

      • Нарушение регуляции обмена фосфора.

      • Недостаточное поступление в организм (низкое потребление белка).

      • Повышенное поступление в организм соединений кальция, алюминия, магния, бария.

      • Избыточное потребление искусственных напитков (лимонады и пр.).

      • Длительные хронические заболевания.

      • Интоксикации, наркозависимости, алкоголизм.

      • Заболевания щитовидной железы.

      • Болезни околощитовидных желез.

      • Заболевания почек.

      • Искусственное вскармливание грудных детей.

 


    • Основные проявления дефицита фосфора


      • Повышенная утомляемость, снижение внимания, слабость, истощение.

      • Боли в мышцах.

      • Снижение сопротивляемости к инфекциям к простудным заболеваниям.

      • Недостаточность белоксинтезирующей функции печени.

      • Дистрофические изменения в миокарде.

      • Кровоизлияния на коже и слизистых оболочках.

      • Остеопороз.

      • Иммунодефицитные состояния.

 

 

  • Повышенное содержание фосфора в организме

Интоксикация соединениями фосфора сопровождаются нарушениями функции печени и почек, сердечно-сосудистой системы, желудочно-кишечного тракта, расстройствами деятельности других органов и систем; развиваются гипохромная анемия, появляются многочисленные геморрагии.

У животных, получавших длительно рацион, содержащий более чем 2:1 соотношение фосфора к кальцию, наблюдались гипокальциемия и вторичный гиперпаратиреоидизм с чрезмерной резорбцией и потерей кости. У младенцев при искусственном вскармливании молоком с высоким содержанием фосфора может возникать гипокальциемия и тетания.

Гиперфосфатемия обычно наблюдается при хронической почечной недостаточности. Она может также развиться при тяжелом гемолизе, распаде опухоли, синдроме рабдомиолиза и различных эндокринных дисфункциях, (гипопаратиреоидизм, акромегалия, выраженный тиреотоксикоз). Клиническое проявление хронической гиперфосфатемии: эктопические кальцификаты.


    • Причины избытка фосфора


      • Избыточное поступление фосфора («белковый перекорм»).

      • Избыточное употребление консервированных продуктов, лимонадов.

      • Длительный контакт с фосфорорганическими соединениями.

      • Нарушение регуляции обмена.

      •  

    • Основные проявления избытка фосфора


      • Отложение в тканях малорастворимых фосфатов.

      • Почечно-каменная болезнь.

      • Поражение печени, желудочно-кишечного тракта.

      • Развитие анемии, лейкопении.

      • Кровотечения, кровоизлияния.

      • Декальцинация костной ткани.  

  • Определение концентрации фосфора в крови

Основными показаниями для определения содержания фосфора в крови являются: различные заболевания костей, почек, паращитовидных желез. Подробнее: Определение фосфора.

 

  • Синергисты и антагонисты фосфора

Усвоение фосфора в организме человека усиливается под влиянием витаминов A, D, F; а также K, Ca, Fe, Mn, HCl (желудочного сока), ферментов и белков.

В свою очередь, Al, Fe, Mg, Са; наряду с чрезмерным употреблением сахара; витамин D; паратгормон, эстрогены, андрогены, кортикостероиды и тироксин способны снижать уровень фосфора в организме.

 


  • Коррекция недостатка и избытка фосфора в организме

Восполнение дефицита фосфора в организме происходит путем увеличения потребления богатых фосфором пищевых продуктов, БАД и лекарственных препаратов (АТФ, рибоксин, фосфоколин, глицерофосфаты, фитин и др.).

При хронической гиперфосфатемии рекомендуется, когда это возможно, ограничение диетического потребления фосфора и назначаются пероральные фосфатсвязывающие, веществ, содержащие соли алюминия, кальция или магния. Однако длительный прием алюминия и магния противопоказан больным с хронической почечной недостаточностью. Иногда лечение проводится путем парентерального введения бедных фосфатами растворов.

 


  • Соединения фосфора

Некоторые соединения фосфора (фосфин) очень токсичны. Боевые отравляющие вещества зарин, зоман, табун являются соединениями фосфора.

Острые отравления соединениями фосфора проявляются жжением во рту и желудке, головной болью, слабостью, рвотой. Через 2-3 суток развивается желтуха. Для хронических форм отравления характерны нарушение кальциевого обмена, поражение сердечно-сосудистой и нервной систем.

Первая помощь при остром отравлении соединениями фосфора — промывание желудка, слабительное, очистительные клизмы, внутривенно растворы глюкозы. При ожогах кожи обработать пораженные участки растворами медного купороса или соды.

Красный фосфор практически нетоксичен. Пыль красного фосфора, попадая в легкие, вызывает пневмонию при хроническом действии.

Белый фосфор очень ядовит, растворим в липидах. Смертельная доза белого фосфора — 50-150 мг. Попадая на кожу, белый фосфор дает тяжелые ожоги.

Предельно допустимая концентрация паров фосфора в воздухе 0,03 мг/м3.

 


  • Применение соединений фосфора

Соединения фосфора используется в химической промышленности, при обработке металлов, в сельском хозяйстве (фосфорные удобрения). «Кормовые» фосфаты (соли ортофосфорной кислоты содержащие фосфор и кальций) применяются в качестве подкормки для сельскохозяйственных животных.

В медицине множество соединений фосфора используется в виде лекарственных препаратов. Фосфаты цинка применяются в качестве пломбировочного материала в стоматологии.

Источник информации

http://www.smed.ru/guides/192/#Biologicheskaya_rol_fosfora

Поделитесь с Вашими друзьями:

zodorov.ru

Биологическая роль фосфора в жизни растений

Фосфор является обязательной составной частью живой клетки растений, он входит в состав нуклеиновых кислот, которые участвуют в таких важных процессах жизнедеятельности растительных организмов, как синтез белков и передача наследственных свойств. В свою очередь, нуклеиновые кислоты образуют в растительных организмах комплексы с белками, так называемые нуклеопротеиды, участвующие в построении клеточных ядер. Фосфор содержится также в веществах, определяющих направление и скорость биохимических процессов в растениях, — в витаминах, гормонах, ферментах.

Как показали исследования последнего времени, особенно велика роль фосфора в процессах дыхания растений и синтеза углеводов — крахмала, сахаров.

Кроме того, фосфор входит в состав других органических соединений, имеющих большое значение в жизни растений: фосфатидов, фитина, сахарофосфатов и др.

Фосфатиды — вещества, сходные с жирами, но отличающиеся от них наличием фосфора и азота. Фосфатиды являются частью протоплазмы и играют важную роль в процессах проникновения и обмена веществ в клетках растений. Больше всего их находится обычно в зародышах семян растений. В семенах пшеницы фосфатидов в среднем содержится 0,6–0,7 %, в семенах гороха 1,1–1,3 и в семенах люпина синего около 2,2 %.

Фитин, представляющий собой кальциево-магниевую соль инозитфосфорной кислоты, является запасным веществом в семенах растений. Содержание его довольно значительно и составляет, например, в семенах льна 1,6 %, подсолнечника 2,0 %. При прорастании семян фитин разлагается, при этом образуются более простые соединения фосфорной кислоты, используемые проростками и молодыми растениями для питания.

В последние годы установлена большая роль фосфора в накоплении энергии, за счет которой осуществляются многие важнейшие процессы в растительном организме. Считают, что энергия света, необходимая для синтеза органического вещества в растениях, предварительно накапливается в сложном органическом соединении — аденозинтрифосфорной кислоте. В состав этой кислоты входят три остатка молекул фосфорной кислоты, последовательно соединенных так называемыми макроэргическими связями, то есть связями, несущими большой запас энергии.

В процессах биохимического обмена веществ остатки фосфорной кислоты могут с помощью ферментов отщепляться от аденозинтрифосфорной кислоты и переноситься на другие соединения вместе с энергией, которую они несут.

Неорганические соединения фосфора имеются во всех частях растений — стеблях, листьях, цветках, корнях и семенах. Количество неорганических фосфатов может сильно изменяться в зависимости от степени обеспеченности растений фосфором и от фазы развития растений. Накопление неорганического фосфора в стеблях растений — один из признаков достаточной обеспеченности растений фосфорной пищей. Неорганические соединения фосфора могут накапливаться в растениях в виде солей калия, кальция и магния. Они служат запасными фосфорсодержащими веществами и используются по мере надобности на построение органических соединений, в виде которых обычно и находится большая часть фосфора в растении.

Регулируя уровень фосфатного питания растений, можно в определенной мере управлять темпами их роста и развития и, что часто не менее важно, изменять качество урожая. Участие фосфора в углеводном обмене растений позволяет с помощью фосфорных удобрений воздействовать на повышение содержания сахара в корнях сахарной свеклы, крахмала в клубнях картофеля и т. д.

Элементы пищи растений, в том числе и фосфор, могут поглощаться не только через корни, но и через листья. При внекорневом питании фосфаты быстро передвигаются в другие части растений, включая и корни. С помощью метода меченых атомов было установлено, что часть поступившего в растения фосфора вновь выделяется через корни.

Большая часть растений в первый период жизни обладает слабой способностью усваивать труднорастворимые фосфаты. Поступление фосфора в достаточном количестве с момента прорастания семян усиливает рост корневой системы, вследствие чего резко возрастает способность растений обеспечивать себя питательными веществами и влагой из почвы. Растения быстрее развиваются, а усвоенная ими фосфорная кислота используется более продуктивно, так как большая часть ее при этом направляется на образование репродуктивных органов. Обильное питание растений фосфором значительно ускоряет образование зерна и существенно изменяет соотношение между соломой и зерном у злаков в пользу последнего.

На долю фосфора приходятся обычно десятые доли процента от веса сухих растений. Наиболее богаты им семена растений, в стеблях и листьях фосфора значительно меньше. В то время как количество фосфора в репродуктивных органах довольно постоянно, в стеблях и листьях оно может изменяться в весьма широких пределах в зависимости от условий питания растений.

По данным американских авторов, в период полной спелости кукурузы фосфора в различных органах растения было (в процентах от его общего количества в урожае): в зерне 52,3; листьях 28,6; стеблях 10,5; обертках початков 4,4 и корнях 4,2. Недостаток фосфора в питании растений резко сказывается на образовании репродуктивных органов. При остром фосфорном голодании растений приостанавливается также рост стеблей и листьев.

Рассмотрим признаки фосфорного голодания у отдельных культур. У кукурузы недостаток фосфора часто проявляется вскоре после появления всходов. При этом замедляется рост, затем нижние темно-зеленые листья окрашиваются в фиолетовый цвет сначала с краев, а потом и по всей поверхности верхней и нижней стороны листа. При резком голодании фиолетовая окраска переходит на все листья, а ткани с верхушек и краев их отмирают и становятся коричневыми. У озимой ржи и пшеницы при остром фосфорном голодании верхушки нижних листьев приобретают красную и красно-фиолетовую окраску. Эти признаки могут проявляться уже в фазе трех листьев, кущение в этом случае проходит слабо или отсутствует. У овса при резком голодании листья окрашиваются в фиолетовый цвет, засыхают и спирально скручиваются. Чаще всего признаки фосфорного голодания проявляются во время выбрасывания метелки и позднее, стебли при этом приобретают красную и пурпурную окраску. Листья сахарной свеклы при фосфорном голодании становятся мелкими, тусклыми, с голубоватым оттенком. Края нижних листьев отмирают и приобретают темно — коричневый и черный цвет, почернение захватывает и жилки листьев. При недостатке фосфора у картофеля сильно ослабляется рост ботвы, листья становятся темно-зелеными и отходят от стебля под острым углом. Ботва и листья до самой уборки сохраняют темно — зеленый цвет, фазы бутонизации и цветения обычно задерживаются на 3–5 дней. Стебли помидоров при сильном голодании тонкие и жесткие, нижняя сторона листьев имеет красновато — фиолетовую окраску, которую позднее приобретают черешки и стебли. Цветение растений запаздывает, плоды образуются мелкие. Признаки умеренного недостатка фосфора можно заметить и в период плодоношения. В этом случае фиолетовый оттенок появляется на жилках и нижней поверхности листьев; плоды созревают плохо. У хлопчатника при сильном недостатке фосфора в ранние периоды роста листья бывают темно — зелеными и мелкими, а все растение имеет карликовый вид. Развитие хлопчатника сильно задерживается, резко снижается способность к плодообразованию, коробочки имеют небольшой размер и содержат щуплые семена. Листья подсыхают, почти не изменяя окраски. Если фосфора не хватает во второй половине вегетации, цветение проходит нормально, но созревание коробочек задерживается.

Кроме метода диагностики питания растений по их внешнему виду (визуальная диагностика), в настоящее время довольно широко распространены химические методы диагностики. Наиболее быстро потребность растений в определенных элементах питания можно установить, используя метод анализа растений на их свежих срезах или в капле сока, полученного из черешка, стебля или других частей растения. При этих способах анализа растения дают ответ на вопрос о содержании минеральных форм питательных веществ. По их содержанию в растении можно судить о ходе усвоения из почвы и удобрений определенных элементов пищи, что при недостатке какого-либо элемента позволяет активно вмешиваться в процессы питания растительных организмов.

Чтобы определить содержание фосфора, получают отпечаток среза растения на фильтровальной бумаге диаметром 2 см, предварительно пропитанной раствором молибдата аммония (5 г молибденовокислого аммония растворяют в 100 мл воды и добавляют 35 мл азотной кислоты с удельным весом 1,2) и высушенной. В тех случаях, когда растение не сочное, например соломина злаковых, рекомендуется нанести каплю раствора молибдата аммония на срезанный конец. Срез растения прижимают к центру кружка фильтровальной бумаги и после просыхания отпечатка на бумагу наносят сначала каплю раствора бензидина (0,5 г бензидина растворяют в 10 мл концентрированной уксусной кислоты и разбавляют водой до 100 мл), а после повторного высыхания — каплю насыщенного раствора уксуснокислого натрия.

После проведения этих операций на участках бумаги, где из растения была выделена фосфорная кислота, появляется синяя окраска. При аккуратном выполнении указанной методики можно установить концентрацию неорганических фосфатов в сосудах, тканях и клетках на срезанной части растения.

Возможен и другой вариант анализа: срез придавливают стеклянной палочкой к фильтровальной бумаге, а затем отодвигают и наносят реактивы отдельно на срез и на бумагу. В этом случае окраска может получиться более яркой, но без локализации ее соответственно тканям среза.

Интенсивность полученной синей окраски сравнивают со специально отпечатанной шкалой (оценка в баллах) или со шкалой образцовых растворов, приготавливаемой на месте с использованием в качестве источника фосфора КН2РО4 (оценка по содержанию Р2О5 в мг на 1 л раствора).

К. П. Магницкий предложил «полевую лабораторию» — прибор, позволяющий упрощенно устанавливать содержание минеральных форм основных элементов питания в соке растений. Определение основано на способности содержащихся в соке растений минеральных веществ давать с некоторыми реактивами цветные растворы или осадки, интенсивность окраски которых сравнивают со шкалой цветных пятен, прилагаемой к прибору (оценка в баллах), или со шкалой образцовых растворов (оценка по содержанию элемента в мг на 1 кг сока).

При анализе на фосфор полученные при помощи ручного пресса капли сока помещают в пробирку или на специальные капельные пластинки. Затем сок разбавляют (на каплю сока три капли воды).

Таблица 1

Расчет результатов анализа на содержание фосфора при сравнении со шкалой стандартных растворов или с бумажной шкалой цветных пятен






Балл

Соответствует содержанию фосфора (в мг на 1 кг сока)

Содержание элемента

1

16

Очень небольшое

2

40

Небольшое

3

80

Умеренное

4

160

Большое

 

После этого к соку растений добавляют две капли раствора молибденовокислого аммония (1 г молибденовокислого аммония растворяют при нагревании в 20 л воды, после остывания раствора добавляют 20 мл концентрированной соляной кислоты и 160 мл воды) и помешивают оловянной палочкой в течение 10–20 секунд до установления устойчивой окраски. Полученную окраску исследуемого сока сравнивают с окраской шкалы образцовых растворов или с окраской цветной бумажной шкалы (табл.1).

 

Литература:

 

1.                   Магницкий К. П. «Как определить по внешнему виду растений их потребность в удобрениях». Издательство «Знание», — М.: — 1957.

2.                   Петербургский Д. Н. «Корневое питание растений». Россельхозиздат, М.: — 1962.

3.                   Церлинг В. В. «Диагностика питания растений по их химическому составу». М.: — 1960.

moluch.ru

Фосфор, биологическая роль, обмен, регуляция

Биологическая
роль
:

  • образование
    (совместно с кальцием) структуры костной
    ткани;

  • строение
    ДНК, РНК, фосфолипидов, коферментов;

  • образование
    макроэргов;

  • фосфорилирование
    (активация) субстратов;

  • поддержание
    кислотно-основного равновесия;

  • регуляция
    метаболизма (фосфорилирование,
    дефосфорилирование белков, ферментов).

Обмен

В
организме содержится 650 г фосфора, из
них в скелете – 8,5%, в клетках мягких
тканей – 14%, во внеклеточной жидкости
– 1 %. Поступает около 2 г в сутки, из
которых всасывается до 70%. Т1/2
кальция мягких тканей – 20 суток, скелета
– 4 года. Выводится фосфор: с мочой –
1,5 г/сутки, с калом – 0,5 г/сутки, с потом
– около 1 мг/сутки.

Регуляция
обмена

Паратгормон
усиливает выход фосфора из костной
ткани и выведение его с мочой, а также
увеличивает всасывание в кишечнике.
Обычно концентрация кальция и фосфора
в плазме крови изменяются противоположным
образом. Однако не всегда. При
гиперпаратиреоидизме повышаются уровни
обоих, а при детском рахите снижаются
концентрации обоих.

Эссенциальные микроэлементы

Эссенциальные
микроэлементы – микроэлементы без
которых организм не может расти,
развиваться и совершать свой естественный
жизненный цикл. К эссенциальным элементам
относятся: железо, медь, цинк, марганец,
хром, селен, молибден, иод, кобальт. Для
них установлены основные биохимические
процессы в которых они участвуют.
Характеристика жизненно-важных
микроэлементов приведена в таблице
29.2.

Таблица
29.2.

Эссенциальные
микроэлементы, краткая характеристика.

п/п

Микро-элемент

Содержание
в организме (в среднем)

Основные
функции

1.

Медь

100
мг

Компонент
оксидаз (цитохромоксидаза), участие
в синтезе гемоглобина, коллагена,
иммунных процессах.

2.

Железо

4,5
г

Компонент
гем-содержащих ферментов и белков
(Hb,Mbи
др.).

3.

Иод

15
мг

Необходим
для синтеза гормонов щитовидной
железы.

4.

Кобальт

1,5
мг

Компонент
витамина В12.

5.

Хром

15
мг

Участвует
в связывании инсулина с рецепторами
клеточных мембран, образует комплекс
с инсулином и стимулирует проявление
его активности.

6.

Марганец

15
мг

Кофактор
и активатор многих ферментов
(пируваткиназа, декарбоксилазы,
супероксиддисмутаза), участие в
синтезе гликопротеинов и протеогликанов,
антиоксидантное действие.

7.

Молибден

10
мг

Кофактор
и активатор оксидаз (ксантиноксидаза,
сериноксидаза).

8.

Селен

15
мг

Входит
в состав селенопротеинов,
глутатионпероксидазы.

9.

Цинк

1,5
г

Кофактор
ферментов (ЛДГ, карбоангидраза, РНК
и ДНК-полимеразы).

Глава № 30 биохимия крови

Кровь – жидкая
подвижная ткань, перемещающаяся по
сосудам. Выполняет роль транспортного
и коммуникативного средства, интегрирующего
обмен веществ в различных органах и
тканях в единую систему.

studfiles.net

Отправить ответ

avatar
  Подписаться  
Уведомление о