Какие аминокислоты полезнее и нужнее человеческому организму, как выбрать добавку с аминокислотами?
Аминокислоты – это органические соединения, из которых в организме синтезируются белки. Человек не смог бы без них существовать, так как они входят в состав всех тканей и участвуют во многих биохимических процессах. Всего известно 22 разновидности аминокислот, которые делятся на 3 группы:
- заменимые – синтезируются в организме из других аминокислот;
- незаменимые – поступают исключительно с пищей;
- условно-заменимые – вырабатываются в незначительных количествах.
Внимание! Основной источник аминокислот – белковые продукты. Также их недостаток можно восполнить из спортивных добавок.
Большую часть аминокислот можно получить из пищи. Поэтому рассмотрим, добавкам с какими белковыми соединениями стоит отдать предпочтение.
1 место в рейтинге – лейцин, изолейцин, валин
Самые важные аминокислоты, которые рекомендованы к приему всем спортсменам, входят в комплекс

Они увеличивают скорость анаболических процессов (строение) и снижают скорость катаболических (распад), что помогает сохранить мышечную массу даже при соблюдении жесткой диеты и интенсивных тренировках. Добавки выпускаются в форме таблеток, порошка, жидкостей и капсул.
Внимание! BCAA увеличивают запас энергии в мышцах, повышают синтез лептина и, тем самым, способствуют ускорению похудения, стимулируют производство в организме инсулина, хорошо укрепляют иммунитет и активируют белок, от которого зависит рост клеток.
2 место – глютамин
Второе место по важности среди аминокислот занимает глютамин. Его часто добавляют в спортивный комплекс BCAA для усиления его эффективности. Из этого компонента мышечные ткани состоят на 60%.
Внимание! Основные функции глютамина – хороший альтернативный глюкозе источник энергии, снижение синтеза катаболического гормона кортизола, участник белкового синтеза, укрепление иммунитета.![]()
3 место – аргинин, глицин, лизин, фенилаланин
Следующие аминокислоты уступают предыдущим по влиянию на набор мышечной массы, но оказывают всестороннее положительное воздействие на организм. Это аргинин, фенилаланин, лизин и глицин.
На чем остановить выбор?
Аминокислоты, расположившиеся на втором и третьем месте, несомненно полезны. Однако если вам нужен максимально выраженный эффект, лучше выбрать комплекс BCAA.
Остальные белковые соединения почти не имеют преимуществ перед простым протеином. Обычный сывороточный протеиновый порошок содержит те же аминокислоты, единственное их отличие в том, что усваиваться они будут чуть медленнее, поскольку организму придется извлечь их из белков.
что такое, полезные свойства и применение
Аминокислоты – это органические составляющие белков, их мономеры. По структуре эти соединения состоят из карбоксильных и аминных групп, а также радикала. Большая часть организма построена из различных белков, поэтому без аминокислот людям обойтись нельзя, особенно спортсменам, ведь эти соединения являются строительными кирпичиками почти во всех клетках и органах. Ваши мышцы состоят из миофибрилл, а они в свою очередь из нитей белков: актина и миозина. При наращивании мышечной массы атлету нужен материал для его мускулов, которым как раз выступают различные аминокислоты.
Эти соединения делятся на протеиногенные и непротеиногенные. Первые – это 20 аминокислот, которые кодируются нашей ДНК и составляют структуру белков. Вторые – это все остальные, которых в природе насчитывается больше двух сотен. Они участвуют в метаболизме, но функций у них гораздо меньше. Те 20 основных аминокислот, из которых строятся белки тоже можно разделить на несколько групп: заменимые (зеленые), незаменимые (розовые) и условно-заменимые (включены в зеленые). Те, которые не могут в полном объеме вырабатываться организмом, рекомендуется принимать с пищей и с БАДами.
Функции аминокислот:
- участвуют в регенерации мышц, связок, суставов
- регулируют обмен веществ
- любой строительный процесс идет с их помощью
- все функции белков, так как они это длинная и сложная цепь аминокислот
Аминокислоты в пище
Выяснив, что все белки состоят из аминокислот, можно утверждать, что они содержатся во всех продуктах питания. Диетологи для поддержания нормальной работоспособности тела рекомендуют употреблять в пищу большое количество пищи животного происхождения (яйца, курица, мясо, молоко) а также бобовые культуры, сою и различные крупы. Но то, что достаточно для обычного человека, недостаточно для тех, кто всерьез занимается спортом. Кроме незаменимых аминокислот атлетам рекомендуется употреблять в большем количестве и другие. Например, таурин, который не находится в списке «обязательного потребления», содержится в составе многих препаратов.
Виды аминокислот
В пище эти соединения могут встречаться в четырех формах. В свободной форме они очень быстро поступают в кровь и усваиваются, не требуют переваривания. Обычно это изолированные и одиночные соединения. В этой форме их рекомендуют употреблять только во время или после тренировок. В основном их действие направлено на предотвращение мышечного разложения или катаболизма. Гидролизаты – разложившиеся белки, в которых находятся маленькие цепочки аминокислот. Они признаны самыми быстроусвояемыми. Рекомендуемая доза приема – 10 грамм до и после длительных нагрузок, или утром. Ди- и трипептидные формы – тоже самое что и гидролизированные формы, только цепочки состоят из двух или трех компонентов. Количество и время приема у них такое же, но усвояемость немного ниже. Последняя форма – ВСАА (Branched Chain Amino Acids). Самый популярный и часто встречаемый комплекс из аминокислот: валин, лейцин и изолейцин. Большое распространение ВСАА получил из-за функций соединений.
Основные аминокислоты для атлетов:
Лизин – основная форма для добавок – L-лизин. Участвует в кальциевом обмене, производстве биологических активных веществ, регенерации тканей, помогает восстанавливаться мышцам в период излишнего напряжения, утилизирует избыток жира, поддерживает баланс азота в теле человека. Нужное количество в день, 12 миллиграмм, обычно поступает с пищей, но иногда сверх нормы можно употреблять еще 1-1,2 миллиграмма. Избыток лизина в организме может примести к почечнокаменной болезни и неправильной работе желудочно-кишечного тракта.
Метионин – одно из соединений, входящих в состав ВСАА. Он не увеличивает рост мышц, но укрепляет иммунитет и выносливость организма. Так же эта аминокислота ускоряет разрушения липидов а в печени и снижает концентрацию холестерина в крови. Рекомендуемое количество – 1000 – 1500 миллиграмм в сутки. Если вы считаете, что ваша диета хорошо сбалансирована и в ней много животных продуктов, тогда стоит ориентироваться по нижней границе. Если всё наоборот- то по верхней границе. Суточную дозу стоит распределить на три части и принимать метионин за час до еды.
Лейцин – еще одно из важнейших соединений, входящих в состав ВСАА. Эта аминокислота отвечает за ускорение анаболизма, регенерацию, проведение обменных реакций. Дополнительное применение лейцина способствует сжиганию жира и синтезу коллагена, тем самым влияя на красоту и здоровье кожи. В спорте в комплексе с изолейцином и валином он увеличивает в несколько раз синтез белка, что влияет на мышцы. При сушке этот комплекс аминокислот способствует использованию жира в качестве основного источника энергии для тела человека.
Изолейцин — входит в состав ВСАА. Помогает мускулам быстро восстанавливаться, поддерживает нормальный уровень глюкозы в крови и рост. Наиболее выраженное действие при применении с метионином и лейцином.
Треонин – вещество, которое участвует в формировании эластина и коллагена, в синтезе белка, поддерживает нормальную работу печени и выработку антител, улучшает пищеварение и поглощение ценных питательных веществ, используется в лечении психических расстройств. Для бодибилдеров основной эффект: быстрое наращивание мышечной массы и быстрое усвоение белка. Принимать рекомендуется по 8 миллиграмм на килограмм веса тела. При расчете не забывайте учитывать содержание аминокислоты в продуктах питания.
Глицин – аминоксилота, которая входит в многие ноотропы. Неудивительно, что она является важным компонентом в спортивном питании. Усилитель вкуса и запаха, это вещество используется атлетами при подготовке к соревнованиям. Глицин повышает внимательность, выдержку, собранность, сосредоточение, мотивацию. Норма – 0,1 грамм по два, три раза в день. Глицин сочетается с другими аминокислотами, добавками, отпускается без рецепта.
Аланин – аминокислота, которая не используется в синтезе белка, но зато употребляется организмом, как регулятор кислотности в мышцах. При нормальной концентрации аланина повышается содержание карнозина, который не дает образованию кислоты в мышцах во время интенсивных упражнений. Это вещество убирает боль в мускулах и активно влияет на их восстановление после нагрузок. Но для легкоатлетов эта аминокислота не играет большого значения, поэтому дополнительно ее употреблять не рекомендуется. Норма – 1-2 грамма перед и после длительных упражнений. Максимальный эффект можно увидеть появляется после трехнедельного курса.
Аргинин – вещество, главной ролью которого является удерживается азота в организме. Азот используется мышцами для активного роста поэтому данную аминокислоту активно добавляют в БАДы. Кроме того, аргинин используется для укрепления иммунитета, лечения от тяжелых травм и ВИЧа, восстановления эпителиальных тканей. Еще одна роль вещества – он препятствует отложению жира и способствует его сжиганию. В результате этих процессов вы можете достичь желаемого мышечного рельефа. При применении ориентируетесь на инструкцию, указанную на упаковке.
Глютамин — условно незаменимая аминокислота, которая сохраняет энергию для силовых упражнений более долгое время, снижает уровень молочной кислоты в мышцах, снижает тягу к пище с повышенным содержанием сахара. Дополнительный прием этого вещества помогает при длительных нагрузках и похудении. При применении ориентируетесь на инструкцию, указанную на упаковке.
Цистеин – аминокислота, которая участвует в образовании дисульфидных мостиков. Без нее не будут активно синтезироваться новые белки (ваши мышцы), поэтому ее потребление необходимо для атлетов.
Так же существует множество добавок в состав которых входят незаменимые аминокислоты. Они рекомендованы тем, кто хочет скорректировать свою диету и улучшить синтез белка. Синтез белка увеличивается при увеличении мышц и их регенерации.
Проверка на подлинность
Проверка ВСАА на качество продукта:
— Они не полностью растворимы и образуют на воде пленку, но иногда производители добавляют в состав смеси эмульгаторы. В такой комбинации получается порошок хорошо растворяется
— Если попробовать ВСАА – будет горький вкус
— Срок годности, цвет и консистенция соответствуют описанию на упаковке
— Целостность упаковки не нарушена
— Присутствует голограмма или логотип, BATCH или QR-коды
Дозировка и время приема
Количество аминокислот, необходимых для ежедневного приема, рассчитывается из веса спортсмена и индивидуальных особенностей. Обычно это от десяти до тридцати граммов. Но не стоит забывать, что порошок содержит не только аминокислоты, но и другие сопутствующие вещества, поэтому количество добавки не равняется количеству аминокислот. Так же при приеме одной определенной аминокислоты, может блокироваться всасывание других, поэтому каждая порция веществ не должна превышать пяти грамм. Обычно принимают аминокислоты утром, до (для повышения работоспособности) и после тренировки (для восполнения белкового окна).
Если в инструкции написано, что данный препарат принимается до (после) еды, то стоит употреблять примерно за пол часа до (после) еды вместе с большим количеством воды.
Побочные эффекты протеина
Вред аминокислот может проявляться при многократном увеличении дозы приема (в четыре, пять раза). Тогда симптомы могут проявляться различные: от летального исхода до нарушения пищеварения. Если вы следуете инструкциям и сбалансированно питаетесь, то переизбыток аминокислот вам не грозит. Все продукты состоят из белков, белки из аминокислот, поэтому обычной пищей вы не сможете навредить себе.
Незаменимые аминокислоты
Незаменимые аминокислоты — необходимые аминокислоты, которые не могут быть синтезированы в том или ином организме, в частности, в организме человека. Поэтому их поступление в организм с пищей необходимо.
Незаменимыми для человека и животных являются 8 аминокислот: валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан и фенилаланин.
Содержание незаменимых аминокислот в еде
- Валин содержится в зерновых, мясе, грибах, молочных продуктах, арахисе, сое
- Изолейцин содержится в миндале, кешью, курином мясе, турецком горохе (нут), яйцах, рыбе, чечевице, печени, мясе, ржи, большинстве семян, сое.
- Лейцин содержится в мясе, рыбе, буром рисе, чечевице, орехах, большинстве семян.
- Лизин содержится в рыбе, мясе, молочных продуктах, пшенице,орехах.
- Метионин содержится в молоке, мясе, рыбе, яйцах, бобах, фасоли, чечевице и сое.
-
Треонин содержится в молочных продуктах и яйцах, в умеренных количествах в орехах и бобах.
- Триптофан содержится в овсе, бананах, сушёных финиках, арахисе, кунжуте, кедровых орехах, молоке, йогурте, твороге, рыбе, курице, индейке, мясе.
- Фенилаланин содержится в говядине, курином мясе, рыбе, соевых бобах, яйцах, твороге, молоке. Также является составной частью синтетического сахарозаменителя — аспартама, активно используемого в пищевой промышленности.
Таблица содержания незаменимых аминокислот в продуктах
(грамм на 100 грамм продукта)
№ п/п | продукт | лейцин | изолейцин | гистидин | тирозин | глицин | лизин | валин | метионин | фенилаланин | Иусс* |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Молоко женское | 0,108 | 0,062 | 0,028 | 0,06 | 0,042 | 0,082 | 0,072 | 0,022 | 0,056 | 0,053 |
2 | Молоко коровье | 0,278 | 0,182 | 0,081 | 0,119 | 0,03 | 0,218 | 0,189 | 0,068 | 0,136 | 0,130 |
3 | Кефир | 0,263 | 0,173 | 0,075 | 0,112 | 0,056 | 0,209 | 0,183 | 0,063 | 0,138 | 0,126 |
4 | Творог | 0,924 | 0,548 | 0,306 | 0,456 | 0,184 | 0,725 | 0,695 | 0,263 | 0,491 | 0,467 |
5 | Яйцо куриное | 1,13 | 0,83 | 0,294 | 0,515 | 0,37 | 0,883 | 0,895 | 0,378 | 0,732 | 0,611 |
6 | Мясо говяжье | 1,73 | 1,06 | 0,805 | 0,596 | 1,447 | 2,009 | 1,156 | 0,528 | 0,789 | 0,961 |
7 | Мясо куриное | 1,62 | 1,117 | 0,697 | 0,66 | 1,519 | 1,975 | 1,024 | 0,494 | 0,932 | 0,956 |
8 | Печень говяжья | 1,543 | 0,8 | 0,439 | 0,47 | 0,903 | 1,295 | 0,987 | 0,345 | 0,845 | 0,724 |
9 | Треска | 1,222 | 0,879 | 0,54 | 0,439 | 0,525 | 1,551 | 0,929 | 0,488 | 0,651 | 0,708 |
10 | Крупа рисовая | 1,008 | 0,369 | 0,135 | 0,176 | 0,63 | 0,142 | 0,425 | 0,223 | 0,313 | 0,329 |
11 | Крупа манная | 0,364 | 0,258 | 0,186 | 0,158 | 0,263 | 0,32 | 0,386 | 0,103 | 0,399 | 0,245 |
12 | Крупа гречневая | 0,702 | 0,301 | 0,203 | 0,16 | 0,796 | 0,431 | 0,343 | 0,183 | 0,395 | 0,331 |
13 | Крупа овсяная | 0,672 | 0,302 | 0,137 | 0,234 | 0,453 | 0,384 | 0,384 | 0,198 | 0,363 | 0,308 |
14 | Крупа пшенная | 1,04 | 0,244 | 0,137 | 0,226 | 0,22 | 0,226 | 0,333 | 0,207 | 0,48 | 0,309 |
15 | Крупа перловая | 0,584 | 0,258 | 0,152 | 0,148 | 0,308 | 0,286 | 0,313 | 0,173 | 0,331 | 0,253 |
16 | Горох | 1,204 | 0,78 | 0,395 | 0,227 | 0,48 | 0,984 | 0,804 | 0,16 | 0,763 | 0,539 |
17 | Мука пшеничная | 0,567 | 0,29 | 0,096 | 0,149 | 0,149 | 0,12 | 0,387 | 0,108 | 0,322 | 0,219 |
18 | Макаронные изделия | 0,69 | 0,38 | 0,133 | 0,253 | 0,215 | 0,139 | 0,412 | 0,12 | 0,488 | 0,290 |
19 | Хлеб ржаной | 0,275 | 0,146 | 0,118 | 0,293 | 0,217 | 0,132 | 0,062 | 0,062 | 0,278 | 0,173 |
20 | Хлеб пшеничный | 0,55 | 0,25 | 0,106 | 0,162 | 0,264 | 0,103 | 0,286 | 0,088 | 0,33 | 0,212 |
21 | Печенье | 0,357 | 0,171 | 0,247 | 0,088 | 0,172 | 0,08 | 0,054 | 0,054 | 0,334 | 0,162 |
*Иусс — сравнительный индекс удельного содержания. 1 соответствует максимальному содержанию каждой аминокислоты по сравнению с другими продуктами в наборе
Компенсация незаменимых аминокислот
Несмотря на то, что самостоятельно организм не способен синтезировать незаменимые аминокислоты, их недостаток в некоторых случаях все же может быть частично компенсирован. Так например недостаток поступающего вместе с пищей незаменимого фенилаланина может быть частично замещен заменимым тирозином. Гомоцистеин вместе с необходимым количеством доноров метильных групп, снижает потребности в метионине,а глутаминовая кислота частично замещает аргинин. В то же время необходимо отметить, что недостаток хотя бы одной незаменимой аминокислоты, приводит к неполному усвоению и других аминокислот. В таких условиях развитие организмов напрямую зависит от того незаменимого вещества, недостаток которого ощущается наиболее остро (закон минимума Либиха). Так же необходимо помнить, что для разных видов организмов список незаменимых аминокислот в некоторых случаях различен.
Пищевые аминокислоты — Компания НЕО Кемикал
Аминокислоты — основной элемент построениях всех белков. Они делятся на заменимые, незаменимые и условно незаменимые.
Незаменимые аминокислоты – те аминокислоты, которые не могут быть синтезированы в организме человека и должны поступать в организм с пищей.
Условно незаменимыми кислотами называются аминокислоты, которые синтезируются организмом человека при определенных условиях. Часто организм испытывает недостаток этих аминокислот.
К заменимым относятся аминокислоты, которые наш организм способен синтезировать самостоятельно.
ВСАА — это комплекс из трех незаменимых аминокислот: L-лейцин, L-изолейцин и L-валин, основной материал для построения новых мышц. Составляют 35% всех аминокислот в мышцах и принимают важное участие в процессах анаболизма и восстановления, обладают антикатаболическим действием. BCAA не могут синтезироваться в организме, поэтому получать человек их может только с пищей и специальными добавками. BCAA в первую очередь метаболируются в мышцах, их можно рассматривать как основное «топливо» для мышц, которое повышает спортивные показатели, улучшает состояние здоровья, к тому же они абсолютно безопасны.
L — Валин — Один из главных компонентов в росте и синтезе тканей тела. Вместе с лейцином и изолейцином служит источником энергии в мышечных клетках, а также препятствует снижению уровня серотонина. Также необходим для поддержания нормального обмена азота в организме, входит в состав практически всех известных белков, является незаменимой аминокислотой не синтезируется в организме человека и поэтому должен поступать с пищей. Входит в состав ВСАА.
L — Лейцин — Лейцин входит в состав природных белков, применяется для лечения болезней печени, анемий и других заболеваний. В среднем суточная потребность организма в лейцине для здорового человека составляет 4-6 грамм. Входит в состав ВСАА и многих БАД
L — Изолейцин — это аминокислота входящая в состав всех природных белков. Является незаменимой аминокислотой, что означает, что изолейцин не может синтезироваться в организме человека и должен поступать в него с пищей. Участвует в энергетическом обмене..
L — Глутамин – одна из 20 стандартных аминокислот, входящих в состав белка. Самая распространенная аминокислота организма, мышцы состоят из неё на 60%. Широко используется в спортивном питании и при производстве БАД.
Креатин – Креатин чаще всего используется для повышения эффективности физических нагрузок и увеличения мышечной массы у спортсменов. Существуют научные исследования, поддерживающие использование креатина для улучшения спортивной активности молодых и здоровых людей во время кратковременной интенсивной активности и нагрузки
Аминокислоты для спорта: для чего нужны и какие лучше
Аминокислоты для спортсменов – что это такое?
Для того чтобы разобраться в том, нужны ли вообще аминокислоты в спорте, следует понять, что же из себя представляют эти спортивные добавки. Если ограничиться коротким определением, без углубления в химические термины, то аминокислоты – это то, из чего состоят абсолютно любые белки в человеческом теле. Когда в организм попадает белковая пища, то при переваривании она распадается на аминокислоты, которые обеспечивают стабильную работу всех жизненно важных систем и органов.
Впрочем, уникальными этот тип органических соединений делает еще один факт – наличие атомов азота. Присутствие такого компонента наделяет аминокислоты поистине потрясающими функциями – они помогают в строительстве мягких тканей, мышечных волокон, кожного покрова, а также волосяных луковиц и ногтей.
Скажем больше: от того, в каком количестве в вашем организме присутствуют аминокислоты, будет в целом зависеть ваше психологическое состояние, настроение, состояние иммунной системы и даже то количество жира, что присутствует в теле.
При этом самостоятельно организм синтезирует 20 заменимых кислот и еще порядка 10 получает только вместе с пищей или иных источников.
Зачем нужны аминокислоты спортсменам
Безусловно, одна из важнейших и основных функций аминокислот для спорта, объясняющая для чего эти добавки нужны мужчинам и женщинам, заключается в их потрясающей способности стимулировать процессы мышечного роста, а также помогать в восстановлении после тренировочного процесса и уменьшении мышечной усталости. Но только этим дело не ограничивается. Начало тренировочного процесса сопряжено с тем, что в организме протекают биохимические реакции, сопровождаемые выделением промежуточных веществ, провоцирующих появление усталости. Справиться с этим эффектом помогает, к примеру, такая аминокислота как L-Glutamin (глутамин), выступающая в роли источника подпитки и дополнительной энергии для организма.
Именно поэтому добавление аминокислот для спорта будет актуальным не только для тех, кто работает над качеством мышечной структуры. Аминокислоты обязательно должны быть в рационе всех людей, придерживающихся активного образа жизни, независимо от того, профессиональный это вид спорта или любительский для поддержания физической формы.
Если вы спросите, для чего нужны аминокислоты в спорте женщинам, которые вроде не особо заинтересованы в наращивании мышечной массы, то ответом станет еще одна важная функция этой добавки. Дело в том, что аминокислоты помогают избавляться от лишней жировой прослойки в организме, а значит, способствуют похудению. Так, одно из исследований продемонстрировало, что та группа, в которой женщины придерживались правильного питания с большим содержанием аминокислот, избавилась от лишних килограммов гораздо быстрее второй.
Какие аминокислоты для спортсменов лучшие?
В одной из наших прошлых статей мы рассказывали о том, как правильно принимать аминокислоты, а также приводили полную классификацию этих добавок, поэтому ограничимся лишь списком аминокислот при занятиях спортом, которые должны быть у каждого:
- BCAA (БЦАА) – три незаменимые аминокислоты изолейцин, валин и лейцин предотвращают развитие катаболических процессов, помогают наращивать мышечную массу и улучшают качество выполняемой тренировки;
- L-Glutamin (глютамин) – как мы уже говорили выше, глютамин – это тот самый глоток свежего воздуха, что помогает преодолеть чувство утомления и защитить иммунную систему от перегрузок и инфекционных заболеваний;
- Creatine monohydrate (креатин моногидрат) – наравне с протеином участвует в построении мускулатуры, избавляет от лишних жировых отложений (что особенно важно для красивого рельефа) и выводит из мышечных тканей лактат;
- L-carnitine L-tartrate (карнитин тартрат) – любимая женская добавка, активно участвует в беспощадном сжигании лишней жировой прослойки, превращая его в энергию для тренировки.
Что выбрать: аминокислоты или протеин?
Именно такой вопрос довольно часто задают начинающие спортсмены, чтобы выяснить, какой же из этих двух видов спортпита принесет больше пользы. Впрочем, немало и тех, кто желает знать, можно ли совмещать их прием, ведь если аминокислоты – это составные части белка, а протеин и есть белок, то есть ли польза в таком двойном эффекте?
Итак, выбирать между протеином или аминокислотами неправильно. Эти два продукта должны дополнять друг друга, но сразу оговоримся, положительного эффекта можно достигнуть только при правильном употреблении. Организм спортсмена нуждается в белке, а значит, не обойтись без протеина, но для того, чтобы он усвоился, следует добавлять в рацион аминокислоты.
Такой подход позволит добиться значительно лучших результатов, нежели использование только одной или только другой добавки.
Рекомендации экспертов Prime Kraft
Нужно ли добавлять в свой рацион такое спортивное питание, как аминокислоты? Мы считаем, что это, безусловно, важная добавка, которая значительно улучшает не только силовые показатели спортсмена, но и способствуют более эффективному достижению поставленных целей, особенно, если мы говорим о наращивании мышечной массы.
При этом не стоит забывать об элементарных правилах безопасности и четко следовать инструкциям по приему той или иной добавки, которые дают производители. Также не стоит экономить на качестве и выбирать совсем дешевые варианты. Да, вы сбережете часть денег, но вот для вашего здоровья такая экономия может выйти боком.
Наши спортивные добавки проходят строгий контроль на соответствие всем установленным стандартам, а потому мы совершенно точно уверены, что при грамотном приеме, а также интенсивных занятиях спортом, дополненных правильным питанием, вы точно добьетесь всех поставленных целей.
По промокоду BLOG в официальном интернет-магазине primekraft.ru скидка на весь ассортимент 10%! Доставка по всей России.
Аминокислоты и ацилкарнитины как потенциальные метаболомные маркеры шизофрении: новые подходы к диагностике и терапии | Меднова
1. Davalieva K., Maleva Kostovska I., Dwork A.J. Proteomics research in schizophrenia. Frontiers in Cellular Neuroscience. 2016; 10: 18. DOI: 10.3389/fncel.2016.00018.
2. Guest F.L., Guest P.C., Martins-de-Souza D. The emergence of point-of-care blood-based biomarker testing for psychiatric disorders: enabling personalized medicine. Biomarkers in Medicine. 2016; 10 (4): 431–443. DOI: 10.2217/bmm-2015-0055.
3. Li C., Wang A., Wang C., Ramamurthy J., Zhang E., Guadagno E., Trakadis Y. Metabolomics in patients with psychosis: a systematic review. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2018; 177 (6): 580–588. DOI: 10.1002/ajmg.b.32662.
4. Pedrini M., Cao B., Nani J.V.S., Cerqueira R.O., Mansur R.B., Tasic L., Hayashi M.A.F., McIntyre R.S., Brietzke E. Advances and challenges in development of precision psychiatry through clinical metabolomics on mood and psychotic disorders. Progress in Neuro-Psychopharmacology & Biological Psychiatry. 2019; 93: 182–188. DOI: 10.1016/j.pnpbp.2019.03.010.
5. Бойко А.С., Бохан Н.А. Бунева В.Н., Ветлугина Т.П., Зозуля С.А., Иванова С.А., Клюшник Т.П., Корнетова Е.Г., Лосенков И.С., Олейчик И.В., Семке А.В., Смирнова Л.П., Узбеков М.Г., Федоренко О.Ю. Биологические маркеры шизофрении: поиск и клиническое применение / под. ред. Н.А. Бохана, С.А. Ивановой. Новосибирск: Изд-во СО РАН, 2017: 146.
6. Hisamatsu T., Okamoto S., Hashimoto M., Muramatsu T., Andou A., Uo M., Kitazume M.T., Matsuoka K., Yajima T., Inoue N., Kanai T., Ogata H., Iwao Ya., Yamakado M., Sakai R., Ono N., Ando T., Suzuki M., Hibi T. Novel, objective, multivariate biomarkers composed of plasma amino acid profiles for the diagnosis and assessment of inflammatory bowel disease. PLoS One. 2012; 7 (1): e31131. DOI: 10.1371/journal.pone.0031131. 7. Kim J.S., Kornhuber H.H., Schmid-Burgk W., Holzmьller B. Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neuroscience Letters. 1980; 20 (3): 379–382. DOI: 10.1016/0304-3940(80)90178-0.
7. Van de Kerkhof N.W., Fekkes D., van der Heijden F.M., Hoogendijk W.J., Stцber G., Egger J.I., Verhoeven W.M. Cycloid psychoses in the psychosis spectrum: evidence for biochemical differences with schizophrenia. Neuropsychiatric Disease and Treatment. 2016; 12: 1927–1933. DOI: 10.2147/NDT.S101317.
8. Nagai T., Kirihara K., Tada M., Koshiyama D., Koike S., Suga M., Araki T., Hashimoto K., Kasai K. Reduced mismatch negativity is associated with increased plasma level of glutamate in first-episode psychosis. Scientific Reports. 2017; 7 (1): 2258. DOI: 10.1038/s41598-017-02267-1.
9. Steen N.E., Dieset I., Hope S., Vedal T.S.J., Smeland O.B., Matson W., Kaddurah-Daouk R., Agartz I., Melle I., Djurovic S., Jцnsson E.G., Bogdanov M., Andreassen O.A. Metabolic dysfunctions in the kynurenine pathway, noradrenergic and purine metabolism in schizophrenia and bipolar disorders. Psychological Medicine. 2019; 1–12. DOI: 10.1017/S0033291719000400.
10. McDonald J.W., Johnston M.V. Physiological and pathophysiological roles of excitatory amino acids during central nervous system development. Brain Research Reviews. 1990; 15 (1): 41–70. DOI: 10.1016/0165-0173(90)90011-C.
11. Macciardi F., Lucca A., Catalano M., Marino C., Zanardi R., Smeraldi E. Amino acid patterns in schizophrenia: some new findings. Psychiatry Research. 1990; 32 (1): 63–70. DOI: 10.1016/0165-1781(90)90136-s.
12. Oresic M., Tang J., Seppanen-Laakso T., Mattila I., Saarni S.E., Saarni S.I., Lonnqvist J., Sysi-Aho M., Hyotylainen T., Perala J., Suvisaari J. Metabolome in schizophrenia and other psychotic disorders: a general population-based study. Genome Medicine. 2011; 3 (3): 19. DOI: 10.1186/gm233.
13. Yang J., Chen T., Sun L., Zhao Z., Qi X., Zho K., Cao Y., Wang X., Qiu Y., Su M., Zhao A., Wang P., Yang P., Wu J., Feng G., He L., Jia W., Wan C. Potential metabolite markers of schizophrenia. Molecular Psychiatry. 2013; 18 (1): 67–78. DOI: 10.1038/mp.2011.131.
14. Van der Heijden F.M.M.A., Fekkes D., Tuinier S., Sijben A.E.S., Kahn R.S., Verhoeven W.M.A. Amino acids in schizophrenia: evidence for lower tryptophan availability during treatment with atypical antipsychotics? Journal of Neural Transmission. 2005; 112 (4): 577–585. DOI: 10.1007/s00702-004-0200-5.
15. Madeira C., Alheira F.V., Calcia M.A., Silva T.C., Tannos F.M., Vargas-Lopes C., Fisher M., Goldenstein N., Brasil M.A., Vinogradov S., Ferreira S.T., Panizzutti R. Blood levels of glutamate and glutamine in recent onset and chronic schizophrenia. Frontiers in Psychiatry. 2018; 9: 713. DOI: 10.3389/fpsyt.2018.00713.
16. Fukushima T., Iizuka H., Yokota A., Suzuki T., Ohno C., Kono Y., Nishikiori M., Seki A., Ichiba H., Watanabe Y., Hongo S., Utsunomiya M., Nakatani M., Sadamoto K., Yoshio T. Quantitative analyses of schizophrenia-associated metabolites in serum: serum D-lactate levels are negatively correlated with gamma-glutamylcysteine in medicated schizophrenia patients. PLoS One. 2014; 9 (7): e101652. DOI: 10.1371/journal.pone.0101652.
17. Ivanova S.A., Boyko A.S., Fedorenko O.Y., Krotenko N.M., Semke A.V., Bokhan N.A. Glutamate concentration in the serum of patients with schizophrenia. Procedia Chemistry. 2014; 10: 80–85. DOI: 10.1016/j.proche.2014.10.015.
18. Smith Q.R. Transport of glutamate and other amino acids at the blood-brain barrier. The Journal of Nutrition. 2000; 130 (4): 1016–1022S. DOI: 10.1093/jn/130.4.1016S.
19. Shulman Y., Grant S., Seres P., Hanstock C., Baker G., Tibbo P. The relation between peripheral and central glutamate and glutamine in healthy male volunteers. Journal of Psychiatry and Neuroscience. 2006; 31 (6): 406–410.
20. McGale E.H.F., Pye I.F., Stonier C., Hutchinson E.C., Aber G.M. Studies of the inter-relationship between cerebrospinal fluid and plasma amino acid concentrations in normal individuals. Journal of Neurochemistry. 1977; 29 (2): 291–297. DOI: 10.1111/j.1471-4159. 1977.tb09621.x.
21. Alfredsson G., Wiesel F.A., Lindberg M. Glutamate and glutamine in cerebrospinal fluid and serum from healthy volunteers-analytical aspects. Journal of Chromatography B: Biomedical Sciences and Applications. 1988; 424 (2): 378–384. DOI: 10.1016/S0378-4347(00)81116-0.
22. Bjerkenstedt L., Edman G., Hagenfeldt L., Sedvall G., Wiesel F.A. Plasma amino acids in relation to cerebrospinal fluid monoamine metabolites in schizophrenic patients and healthy controls. The British Journal of Psychiatry. 1985; 147 (3): 276–282. DOI: 10.1192/bjp.147.3.276.
23. Misiak B., Wisniewski J., Fleszar M.G., Frydecka D. Alterations in l-arginine metabolism in first-episode schizophrenia patients: Further evidence for early metabolic dysregulation. Schizophrenia Research. 2016; 178 (1–3): 56–57. DOI: 10.1016/j.schres.2016.08.032.
24. Sumiyoshi T., Anil A.E., Jin D., Jayathilake K., Lee M., Meltzer H.Y. Plasma glycine and serine levels in schizophrenia compared to normal controls and major depression: relation to negative symptoms. International Journal of Neuropsychopharmacology. 2004; 7 (1): 1–8. DOI: 10.1017/S1461145703003900.
25. Calcia M.A., Madeira C., Alheira F.V., Silva T.C., Tannos F.M., Vargas-Lopes C., Goldenstein N., Brasil M.A., Ferreira S.T., Panizzutti R. Plasma levels of D-serine in Brazilian individuals with schizophrenia. Schizophrenia Research. 2012; 142 (13): 83–87. DOI: 10.1016/j.schres.2012.09.014.
26. Hashimoto K., Fukushima T., Shimizu E., Komatsu N., Watanabe H., Shinoda N., Nakazato M., Kumakiri C., Okada S., Hasegawa H., Imai K., Masaomi I. Decreased serum levels of D-serine in patients with schizophrenia: evidence in support of the N- methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia. Archives of General Psychiatry. 2003; 60 (6): 572–576. DOI: 10.1001/archpsyc.60.6.572.
27. Takano Y., Ozeki Y., Sekine M., Fujii K., Watanabe T., Okayasu H., Shinozaki T., Aoki A., Akiyama K., Homma H., Shimoda K. Multi-regression analysis revealed a relationship between l-serine and methionine, a component of one-carbon metabolism, in the normal control but not in the schizophrenia. Annals of General Psychiatry. 2016; 15 (1): 23. DOI: 10.1186/s12991-016-0113-3.
28. Bendikov I., Nadri C., Amar S., Panizzutti R., De Miranda J., Wolosker H., Agam G. A CSF and postmortem brain study of D-serine metabolic parameters in schizophrenia. Schizophrenia Research. 2007; 90 (1–3): 41–51. DOI: 10.1016/j.schres.2006.10.010.
29. Hashimoto K., Engberg G., Shimizu E., Nordin C., Lindstrцm L.H., Iyo M. Reduced D-serine to total serine ratio in the cerebrospinal fluid of drug naive schizophrenic patients. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2005; 29 (5): 767–769. DOI: 10.1016/j.pnpbp.2005.04.023.
30. Reveley M.A., De Belleroche J., Recordati A., Hirsch S.R. Increased CSF amino acids and ventricular enlargement in schizophrenia: a preliminary study. Biological Psychiatry. 1987; 22 (4): 413–420. DOI: 10.1016/0006-3223(87)90163-6.
31. El-Tallawy H.N., Saleem T.H., El-Ebidi A.M., Hassan M.H., Gabra R.H., Farghaly W.M., El-Maal N.A., Sherkawy H.S. Clinical and biochemical study of D-serine metabolism among schizophrenia patients. Neuropsychiatric Disease and Treatment. 2017; 13: 1057–1063. DOI: 10.2147/NDT.S126979.
32. Genchi G. An overview on D-amino acids. Amino Acids. 2017; 49 (9): 1521–1533. DOI: 10.1007/s00726-017-2459-5.
33. Saleem S., Shaukat F., Gul A., Arooj M., Malik A. Potential role of amino acids in pathogenesis of schizophrenia. International Journal of Health Sciences. 2017; 11 (3): 63–68.
34. Ozeki Y., Sekine M., Fujii K., Watanabe T., Okayasu H., Takano Y., Shinozaki T., Aoki A., Akiyama K., Homma H., Shimoda K. Phosphoserine phosphatase activity is elevated and correlates negatively with plasma D-serine concentration in patients with schizophrenia. Psychiatry Research. 2016; 237: 344–350. DOI: 10.1016/j.psychres.2016.01.010.
35. He Y., Yu Z., Giegling I., Xie L., Hartmann A.M., Prehn C., Adamski J., Kahn R., Li Y., Illig T., Wang-Sattler R., Rujescu D. Schizophrenia shows a unique metabolomics signature in plasma. Translational Psychiatry. 2012; 2: e149. DOI: 10.1038/tp.2012.76.
36. Cao B., Wang D., Brietzke E., McIntyre R.S., Pan Z., Cha D., Rosenblat J.D., Zuckerman H., Liu Y., Xie Q., Wang J. Characterizing amino-acid biosignatures amongst individuals with schizophrenia: a case-control study. Amino Acids. 2018; 50(8): 1013–1023. DOI: 10.1007/s00726-018-2579-6.
37. Chiappelli J., Postolache T.T., Kochunov P., Rowland L.M., Wijtenburg S.A., Shukla D.K., Tagamets M., Du X., Savransky A., Lowry C.A., Can, A., Fuchs D., Hong L.E. Tryptophan metabolism and white matter integrity in schizophrenia. Neuropsychopharmacology. 2016; 41 (10): 2587–2595. DOI: 10.1038/npp.2016.66.
38. Giesbertz P., Ecker J., Haag A., Spanier B., Daniel H. An LC-MS/MS method to quantify acylcarnitine species including isomeric and odd-numbered forms in plasma and tissues. Journal of Lipid Research. 2015; 56 (10): 2029–2039. DOI: 10.1194/jlr.D061721.
39. Liu M.L., Zhang X.T., Du X.Y., Fang Z., Liu Z., Xu Y., Zheng P., Xu X.J., Cheng P.F., Huang T., Bai S.J., Zhao L.B., Qi Z.G., Shao W.H., Xie P. Severe disturbance of glucose metabolism in peripheral blood mononuclear cells of schizophrenia patients: a targeted metabolomics study. Journal of Translational Medicine. 2015; 13 (1): 226. DOI: 10.1186/s12967-015-0540-y.
40. Cao B., Wang D., Pan Z., Brietzke E., McIntyre R.S., Musial N., Mansur R.B., Subramanieapillai M., Zeng J., Huang N., Wang J. Characterizing acyl-carnitine biosignatures for schizophrenia: a longitudinal pre- and post-treatment study. Translational Psychiatry. 2019; 9 (1): 19. DOI: 10.1038/s41398-018-0353-x.
41. Rao M.L., Gross G., Strebel B., Brдunig P., Huber G., Klosterkцtter J. Serum amino acids, central monoamines, and hormones in drug-naive, drug-free, and neuroleptic-treated schizophrenic patients and healthy subjects. Psychiatry Research. 1990; 34 (3): 243–257. DOI: 10.1016/0165-1781(90)90003-n.
42. Wei J., Xu H., Ramchand C. N., Hemmings G.P. Low concentrations of serum tyrosine in neuroleptic-free schizophrenics with an early onset. Schizophrenia Research. 1995; 14 (3): 257–260. DOI: 10.1016/0920-9964(94)00080-R.
43. Tortorella A., Monteleone P., Fabrazzo M., Viggiano A., De Luca B., Maj M. Plasma concentrations of amino acids in chronic schizophrenics treated with clozapine. Neuropsychobiology. 2001; 44 (4): 167–171. DOI: 10.1159/000054937.
44. Evins A.E., Amico E.T., Shih V., Goff D.C. Clozapine treatment increases serum glutamate and aspartate compared to conventional neuroleptics. Journal of Neural Transmission. 1997; 104 (6–7): 76–766. DOI: 10.1007/BF01291892.
45. Yamamori H., Hashimoto R., Fujita Y., Numata S., Yasuda Y., Fujimoto M., Ohi K., Umeda-Yano S., Ito A., Ohmorie T., Hashimoto, K., Takeda M. Changes in plasma D-serine, L-serine, and glycine levels in treatment-resistant schizophrenia before and after clozapine treatment. Neuroscience Letters. 2014; 582: 93–98. DOI: 10.1016/j.neulet.2014.08.052.
46. Neeman G., Blanaru M., Bloch B., Kremer I., Ermilov M., Javitt D.C., Heresco-Levy U. Relation of plasma glycine, serine, and homocysteine levels to schizophrenia symptoms and medication type. American Journal of Psychiatry. 2005; 162 (9): 1738–1740. DOI: 10.1176/appi.ajp.162.9.1738.
47. Xuan J., Pan G., Qiu Y., Yang L., Su, M., Liu Y., Chen J., Feng G., Fang Y., Jia W., Xing Q., He L. Metabolomic profiling to identify potential serum biomarkers for schizophrenia and risperidone action. Journal of Proteome Research. 2011; 10 (12): 5433–5443. DOI: 10.1021/pr2006796.
48. Cao B., Jin M., Brietzke E., McIntyre R.S., Wang D., Rosenblat J.D., Ragguett R.M., Zhang C., Sun X., Rong C., Wang J. Serum metabolic profiling using small molecular water-soluble metabolites in individuals with schizophrenia: A longitudinal study using a pre-post-treatment design. Psychiatry and Clinical Neurosciences. 2019; 73 (3): 100–108. DOI: 10.1111/pcn.12779.
49. Misiak B., Frydecka D., Laczmanski., Slezak R., Kiejna A. Effects of second-generation antipsychotics on selected markers of one-carbon metabolism and metabolic syndrome components in first-episode schizophrenia patients. European Journal of Clinical Pharmacology. 2014; 70 (12): 1433–1441. DOI: 10.1007/s00228-014-1762-2.
50. Leppik L., Kriisa K., Koido K., Koch K., Kajalaid K., Haring L., Vasar E., Zilmer M. Profiling of amino acids and their derivatives biogenic amines before and after antipsychotic treatment in first-episode psychosis. Frontiers in Psychiatry. 2018; 9: 155. DOI: 10.3389/fpsyt.2018.00155.
51. Ivanova S.A., Loonen A.J.M., Pechlivanoglou P., Freidin M.B., Al Hadithy A.F.Y., Rudikov E.V., Zhukova I.A., Govorin N.V., Sorokina V.A., Fedorenko O.Y., Alifirova V.M., Semke A.V., Brouwers J.R., Wilffert B. NMDA receptor genotypes associated with the vulnerability to develop dyskinesia. Translational Psychiatry. 2012; 2: e67. DOI: 10.1038/tp.2011.66.
52. Ward K.M., Yeoman L., McHugh C., Kraal A.Z., Flowers S.A., Rothberg A.E., Karnovsky A., Das A.K., Ellingrod V.L., Stringer K.A. Atypical antipsychotic exposure may not differentiate metabolic phenotypes of patients with schizophrenia. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 2018; 38 (6): 638–650. DOI: 10.1002/phar.2119.
53. Javitt D.C., Silipo G., Cienfuegos A., Shelley A.M., Bark N., Park M., Lindenmayer J.P., Suckow R., Zukin S.R. Adjunctive high-dose glycine in the treatment of schizophrenia. International Journal of Neuropsychopharmacology. 2001; 4 (4): 385–391. DOI: 10.1017/S1461145701002590.
54. Javitt D.C. Glycine transport inhibitors in the treatment of schizophrenia. Novel Antischizophrenia Treatments. 2012; 367–399. DOI: 10.1007/978-3-642-25758-2_12.
55. Heresco-Levy U., Ermilov M., Lichtenberg P., Bar G., Javitt D. C. High-dose glycine added to olanzapine and risperidone for the treatment of schizophrenia. Biological Psychiatry. 2004; 55 (2): 165–171. DOI: 10.1016/S0006-3223(03)00707-8.
56. Greenwood L.M., Leung S., Michie P.T., Green A., Nathan P.J., Fitzgerald P., Johnston P., Solowij N., Kulkarni J., Croft R.J. The effects of glycine on auditory mismatch negativity in schizophrenia. Schizophrenia Research. 2018; 191: 61–69. DOI: 10.1016/j.schres.2017.05.031.
57. Kato Y., Hin N., Maita N., Thomas A.G., Kurosawa S., Rojas C., Yorita K., Slusher B.S., Fukui K., Tsukamoto T. Structural basis for potent inhibition of d-amino acid oxidase by thiophene carboxylic acids. European Journal of Medicinal Chemistry. 2018; 159: 23–34. DOI: 10.1016/j.ejmech.2018.09.040.
58. Koсyigit Y., Yoca G., Karahan S., Ayhan Y., Yazici M.K. L-arginine add-on treatment for schizophrenia: a randomized, double-blind, placebo-controlled, crossover study. Turk Psikiyatri Dergisi. 2018; 29 (3): 147–153. DOI: 10.5080/u22702.
59. Tayeb H.O., Murad H.A., Rafeeq M.M., Tarazi F.I. Pharmacotherapy of schizophrenia: toward a metabolomic-based approach. CNS Spectrums. 2018; 24 (3): 1–6. DOI: 10.1017/S1092852918000962.
60. Serrita J., Ralevski E., Yoon G., Petrakis I. A pilot randomized, placebo-controlled trial of glycine for treatment of schizophrenia and alcohol dependence. Journal of Dual Diagnosis. 2019; 15 (1): 1–10. DOI: 10.1080/15504263.2018.1549764.
61. MacKay M.B., Kravtsenyuk M., Thomas R., Mitchell N.D., Dursun S.M., Baker G.B. D-serine: potential therapeutic agent and/or biomarker in schizophrenia and depression? Frontiers in Psychiatry. 2019; 10: 25. DOI: 10.3389/fpsyt.2019.00025.
62. Tsai G., Yang P., Chung L.C., Lange N., Coyle J.T. D-serine added to antipsychotics for the treatment of schizophrenia. Biological Psychiatry. 1998; 44 (11): 1081–1089. DOI: 10.1016/S0006-3223(98)00279-0.
63. Heresco-Levy U., Javitt D.C., Ebstein R., Vas A., Lichtenberg P., Bar G., Catinari S., Ermilov M. D-serine efficacy as add-on pharmacotherapy to risperidone and olanzapine for treatment-refractory schizophrenia. Biological Psychiatry. 2005; 57 (6): 577–585. DOI: 10.1016/j.biopsych.2004.12.037.
64. Kantrowitz J.T., Malhotra A.K., Cornblatt B., Silipo G., Balla A., Suckow R.F., Souza C.D., Saksa J., Woods S.W., avitt D.C. High dose D-serine in the treatment of schizophrenia. Schizophrenia Research. 2010; 121 (1–3): 125–130. DOI: 10.1016/j.schres.2010.05.012.
65. Kantrowitz J.T., Epstein M.L., Lee M., Lehrfeld N., Nolan K.A., Shope C., Petkova E., Silipo G., Javitt D.C. Improvement in mismatch negativity generation during d-serine treatment in schizophrenia: correlation with symptoms. Schizophrenia Research. 2018; 191: 70–79. DOI: 10.1016/j.schres.2017.02.027.
66. Weise M., Heresco-Levy U., Davidson M., Javitt D.C., Werbeloff N., Gershon A.A., Abramovich Y., Amital D., Doron A., Konas S., Levkovitz Y., Liba D., Teitelbaum A., Mashiach M., Zimmerman Y. A multicenter, addon randomized controlled trial of low-dose d-serine for negative and cognitive symptoms of schizophrenia. The Journal of Clinical Psychiatry. 2012; 73 (6): 728–734.
67. DOI: 10.4088/JCP.11m07031. 68. Tsai G.E., Yang P., Chang Y.C., Chong M.Y. D-alanine added to antipsychotics for the treatment of schizophrenia. Biological Psychiatry. 2006; 59 (3): 230–234. DOI: 10.1016/j.biopsych.2005.06.032.
68. Umbricht D., Alberati D., Martin-Facklam M., Borroni E., Youssef E.A., Ostland M., Wallace T.L., Knoflach F., Dorflinger E., Wettstein J.G., Bausch, A., Garibaldi G., Santarelli L. Effect of bitopertin, a glycine reuptake inhibitor, on negative symptoms of schizophrenia: a randomized, double-blind, proof-of-concept study. JAMA Psychiatry. 2014; 71 (6): 637–646. DOI: 10.1001/jamapsychiatry.2014.163.
69. Lane H.Y., Lin C.H., Green M.F., Hellemann G., Huang C.C., Chen P.W., Tun R., Chang Y.C., Tsai G.E. Addon treatment of benzoate for schizophrenia: a randomized, double-blind, placebo-controlled trial of D-amino acid oxidase inhibitor. JAMA Psychiatry. 2013; 70 (12): 1267–1275. DOI: 10.1001/jamapsychiatry.2013.2159.
70. Bruno A., Pandolfo G., Crucitti M., Lorusso S., Zoccali R.A., Muscatello M.R.A. Acetyl-L-carnitine augmentation of clozapine in partial-responder schizophrenia: a 12-week, open-label uncontrolled preliminary study. Clinical Neuropharmacology. 2016; 39 (6): 277–280. DOI: 10.1097/WNF.0000000000000170.
71. Chen A.T., Chibnall J.T., Nasrallah H.A. A meta-analysis of placebo-controlled trials of omega-3 fatty acid augmentation in schizophrenia: Possible stage-specific effects. Annals of Clinical Psychiatry. 2015; 27 (4): 289–296.
72. Sethi S., Brietzke E. Omics-based biomarkers: application of metabolomics in neuropsychiatric disorders. International Journal of Neuropsychopharmacology. 2015; 19 (3): pyv096. DOI: 10.1093/ijnp/pyv096.
73. Chan M.K., Gottschalk M.G., Haenisch F., Tomasik J., Ruland T., Rahmoune H., Guest P. C., Bahn S. Applications of blood-based protein biomarker strategies in the study of psychiatric disorders. Progress in Neurobiology. 2014; 122: 45–72. DOI: 10.1016/j.pneurobio.2014.08.002.
74. Nascimento J.M., Martins-de-Souza D. The proteome of schizophrenia. NPJ Schizophrenia. 2015; 1: 14003. DOI: 10.1038/npjschz.2014.3.
Аминокислоты для мозга — Золотой Кубок
Белок является важнейшей частью тканей организма. Белки состоят из аминокислот, которые крайне важны для нормального функционирования внутренних органов, в том числе головного мозга. Аминокислоты поддерживают работу ЦНС, контролируют настроение, эмоции. Достаточное количество этих элементов улучшает память, повышает умственные способности, восприимчивость к информации.
Краткое содержание:Чтобы все органы и системы работали исправно, требуется достаточно много различных аминокислот, но для мозга необходимы лишь некоторые из них, а именно глутаминовая кислота, тирозин, триптофан и глицин, о котором слышали многие. Их называют нейромедиаторами, поскольку они являются передатчиками нервных импульсов в мозге, отвечают за работу ЦНС и память.
Есть и другие элементы, отвечающие за состояние психики и эмоции. От них зависит настроение человека в конкретный момент, а также внимание. Часть из них участвуют в производстве нейромедиаторов.
Также существуют аминокислоты, которые позволяют человеку переносить эмоциональные нагрузки, стрессы, то есть отвечают за способность нервной системы противостоять негативным факторам.
Незаменимые аминокислоты для мозга
Аминокислоты делят на заменимые и незаменимые. Вторые не производятся в организме. Для того, чтобы поддерживать их достаточное количество, нужно правильно питаться, принимать специальные добавки при необходимости. Эти аминокислоты стоит рассмотреть отдельно.
Изолейцин
Эта аминокислота имеет разветвленное строение молекулы. Изолейцин играет важную роль для поддержания психической и физической выносливости организма. Также среди функций этого элемента поддержание в норме уровня гемоглобина в крови и регуляция уровня глюкозы.
Изолейцин крайне важен как при высоких физических нагрузках, так и при стрессах, психических заболеваниях. Его применяют при лечении болезни Паркинсона. Дефицит изолейцина проявляется в виде тревожности, обмороков и головокружения, беспричинного беспокойства, усталости, тахикардии, повышенной потливости. Также человек начинает быстро терять мышечную массу. Избыток может привести к аллергическим реакциям, сгущению крови.
Организм нуждается в изолейцине (3-4 г в сутки). Содержится эта аминокислота в миндале и кешью, курице, яйцах, бобовых, сое, рыбе, печени. Большое количество изолейцина содержится в молочных продуктах, морепродуктах, мясе.
Лейцин
Данная аминокислота не оказывает прямого воздействия на работу мозга, но играет важную роль для поддержания психического равновесия, а также отвечает за восстановление мышечной и костной ткани. Часто эту аминокислоту рекомендуют принимать после травм. Лейцин содержится в рисе, бобовых, сое, пшенице, мясных продуктах.
Лизин
Эта аминокислота входит в состав практически всех белков в человеческом организме. Для восстановления тканей она необходима. Человек, который страдает от дефицита лизина, испытывает раздражительность, плаксивость, слабость, плохо ест, у него выпадают волосы, нарушается внимание, замечается снижение веса, появляются проблемы с репродуктивной функцией. Также лизин играет важную роль в создании гормонов, ферментов в организме, поддерживает иммунитет.
Особенно важен лизин для детей, у которых растут кости. Аминокислота улучшает усвоение кальция в организме. Богаты лизином яйца, молочные продукты, картофель, дрожжи, соя, говядина.
Метионин
Эта аминокислота крайне важна для здоровых суставов и выведения вредных веществ из организма. Метионин рекомендуют принимать при интоксикации (алкогольной или химической). Также аминокислоту назначают женщинам при сильном токсикозе.
Для здоровья организма необходимо получать по 2-4 г метионина в сутки. Дефицит этого элемента приведет к отекам, слабости мышечных тканей, проблемам с органами ЖКТ, печенью, задержке развития плода во время беременности.
Содержат метионин бобы, куриные яйца, мясные продукты, кисломолочные продукты, лук и чеснок.
Фенилаланин
Особенность этой аминокислоты в том, что в организме она способна преобразовываться и принимать участие в синтезе нейромедиатора. Поэтому можно сказать, что фенилаланин оказывает воздействие на настроение человека, его восприимчивость к боли, способность обучаться и запоминать. Недостаток этой аминокислоты может привести к сильнейшим депрессии, гормональным сбоям, снижению умственных способностей. Синтетический фенилаланин назначают людям с артритом, депрессией, болезненными месячными, мигренями и ожирением, так как этот элемент способен снижать аппетит.
Можно найти фенилаланин в следующих продуктах: говядина, курица, морепродукты, молочные продукты.
Треонин
Эта аминокислота играет очень важную роль в белковом и жировом обмене, стимулирует работу иммунной системы. Для взрослого достаточной дозой треонина является 0,5 г в сутки. Если аминокислоты недостаточно, это приводит к слабости мышц и уменьшению мышечной массы, депрессивным состояниям, снижению внимания.
Достаточно большое количество треонина содержится в куриных яйцах, молочных продуктах, говядине. В зерновых его мало, поэтому люди, отказывающиеся от употребления мяса, страдают от дефицита треонина гораздо чаще.
Триптофан
В организме эта аминокислота превращается в важный нейромедиатор, отвечающий за состояние эмоционального благополучия. При недостатке триптофана развивается депрессивное состояние, подавленность, беспричинная тревожность, мигрень. Если у человека есть бронхиальная астма, дефицит этой аминокислоты усилит приступы.
Триптофан часто используют и как снотворное. Его желательно принимать с пищей. Аминокислоты достаточно много в молочных продуктах, растительных маслах, бананах. Поэтому сложилось мнение, что стакан молока на ночь помогает заснуть. Также эта аминокислота содержится в овсянке, арахисе, морепродуктах, курице, индейке.
Прием триптофана в синтетическом виде давно запрещен, так как он был признан опасным для сердца.
Валин
Данная аминокислота играет важную роль в стимуляции умственной деятельности и поддержании координации. Валин способствует скорому заживлению поврежденных тканей. Дефицит валина становит заметен по причине повышения чувствительности кожи и нарушения координации движения. У людей с недостатком этого элемента часто развиваются кожные заболевания, например, дерматит. Суточная норма аминокислоты 3-4 г.
Чтобы восполнить недостаток валина в организме, нужно есть больше сыра и творога, орехов, мяса и яиц.
Заменимые аминокислоты для мозга
Эта разновидность аминокислот синтезируется организмом самостоятельно, а также поступает с пищей.
Аланин
Мозгу для работы требуется много энергии, а данная аминокислота является ее источником. Также аланин поддерживает работу иммунитета и регулирует уровень глюкозы. Эта аминокислота очень часто используется в психиатрии, так как способствует снижению раздражительности и апатии, а также избавляет от мигреней. Способность аланина регулировать уровень глюкозы позволяет долго не ощущать голод.
Пища, богатая аланином, поможет восполнить дефицит: мясо, яйца, желатин, молочные продукты.
Аспарагин
Аминокислота выводит аммиак из организма и защищает ЦНС от его токсического воздействия. Аспарагин регулирует все процессы ЦНС, предотвращая ее излишнее возбуждение или торможение. Также есть мнение, что этот элемент играет важную роль в сопротивлении организма усталости, то есть повышает выносливость. Наибольшее количество аспарагина содержится в мясе.
Дефицит аминокислоты приводит к мышечным болям, заметному снижению работоспособности, ухудшению памяти. Однако избыток тоже опасен. Он может спровоцировать агрессию, проблемы со сном, головным болям.
Аргинин
Этот элемент участвует в синтезе инсулина и гормона роста, а также стимулирует защитные функции организма. Он очень важен для роста мышц, а также поддержания здоровья психики. Из-за активного воздействия на выработку гормона роста детям принимать аргинин не рекомендуется, чтобы не спровоцировать гигантизм. Также избыток аргинина вызывает проблемы с кожей и аллергические реакции, провоцирует тошноту и диарею.
Чтобы восполнить дефицит аргинина, необходимо есть горький шоколад, молочные продукты, пшеницу, орехи, желатин, овсянку.
Глицин
Глицин является ноотропом и известен многим как средство от депрессии. Он способен нормализовать психоэмоциональное состояние, улучшить память и способность к обучению. Дефицит глицина приводит в первую очередь к недостатку энергии и хронической усталости. Люди с недостатком этой аминокислоты часто испытывают проблемы с работой кишечника, плохо спят.
Глицин применяют в синтетическом виде. В природе он содержится в говядине, печени, овсянке. Столкнуться с переизбытком глицина очень трудно, так как в организме он не скапливается, а свободно выводится.
Цистеин
Данная аминокислота защищает клетки мозга от токсического воздействия этилового спита и никотина, а также других вредных химических веществ. Также цистеин замедляет процессы старения в организме, облегчает клиническое проявление заболеваний. Недостаток может спровоцировать снижение иммунитета, кожные заболевания, выпадение волос, ломкость ногтей.
Цистеин присутствует в куриных яйцах, чесноке, луке, орехах и овсянке.
ГАМК
Содержание этой аминокислоты в тканях головного мозга очень велико. Она оказывает противосудорожное и успокаивающее действие. Часто назначается при патологиях головного мозга, снижении умственной активности, хронической и тяжелой депрессии. К недостатку АМК приводит избыток физической нагрузки в сочетании с неправильным питанием и низким количеством питательных веществ в еде. Для восполнения дефицита этой аминокислоты рекомендуют пить чай.
Гистидин
Данная аминокислота полезна для восстановления тканей, роста организма. Она помогает бороться со стрессами, нормализует работу ЖКТ, защищает от инфекций, выводит тяжелые металлы из организма.
Избыток гистидина ведет к возникновению психозов и прочих психических недугов. Также эта аминокислота влияет на половое возбуждение. При дефиците гистидина половое влечение снижается, помимо этого могут возникнуть проблемы со слухом и усилиться тромбообразование. Гистидин содержится в рыбе, красном мясе, злаковых.
Глутаминовая кислота
Это важный нейромедиатор, оказывающий ноотропный эффект и необходимый для нормальной работы головного мозга. Глютаминовая кислота служит источником энергии для клеток мозга. В синтетическом виде ее назначают при эпилептических припадках, проблемах с умственным развитием у детей. Дефицит глутаминовой кислоты может привести к ранней седине, плохому настроению, снижению иммунитета. Глютаминовая кислота содержится в мясных продуктах, знаковых, натуральном молоке.
Глютамин
Данная аминокислота выводит из организма аммиак и снижает его токсическое воздействие на организм. Он улучшает работу мозга, поэтому рекомендуется людям с эпилепсией, импотенцией, страдающим шизофренией.
Глютамин выпускают в синтетическом виде, однако такие препараты должны храниться как можно дальше от влаги, иначе будет выделяться аммиак. При серьезных заболеваниях печени такие препараты не назначаются.
Аминокислота содержится во многих пищевых продуктах, однако при термической обработке разрушается. Чтобы восполнить дефицит глютамина, рекомендуют есть сырую петрушку и шпинат.
Таурин
Защищает мозг от вредного воздействия. При гиперактивности у детей довольно часто назначают синтетический таурин. Также он является частью лечения эпилепсии и беспричинного беспокойства. Организм способен сам производить эту аминокислоту, если в организме нет дефицита витамина В6. Также много таурина в мясных и молочных продуктах, морепродуктах.
Биохимия, незаменимые аминокислоты — StatPearls
Введение
Незаменимые аминокислоты, также известные как незаменимые аминокислоты, представляют собой аминокислоты, которые люди и другие позвоночные не могут синтезировать из промежуточных продуктов метаболизма. Эти аминокислоты должны поступать из экзогенной диеты, потому что в организме человека отсутствуют метаболические пути, необходимые для синтеза этих аминокислот. [1] [2] В питании аминокислоты подразделяются на незаменимые и несущественные. Эти классификации возникли в результате ранних исследований питания человека, которые показали, что определенные аминокислоты необходимы для роста или азотного баланса, даже когда имеется достаточное количество альтернативных аминокислот.[3] Хотя возможны вариации в зависимости от метаболического состояния человека, общепринято считать, что существует девять незаменимых аминокислот, включая фенилаланин, валин, триптофан, треонин, изолейцин, метионин, гистидин, лейцин и лизин. Мнемоническое слово PVT TIM HaLL («частный Тим Холл») — это широко используемое устройство для запоминания этих аминокислот, поскольку оно включает первую букву всех незаменимых аминокислот. Что касается питания, девять незаменимых аминокислот можно получить из одного полноценного белка.Полноценный белок по определению содержит все незаменимые аминокислоты. Полноценные белки обычно получают из источников питания животного происхождения, за исключением сои. [4] [5] Незаменимые аминокислоты также доступны из неполноценных белков, которые обычно представляют собой продукты растительного происхождения. Термин «ограничивающая аминокислота» используется для описания незаменимой аминокислоты, присутствующей в пищевом белке в наименьшем количестве по сравнению с эталонным пищевым белком, таким как яичные белки. Термин «ограничивающая аминокислота» может также относиться к незаменимой аминокислоте, которая не отвечает минимальным требованиям для человека.[6]
Fundamentals
Аминокислоты являются основными строительными блоками белков, и они служат азотистыми скелетами для таких соединений, как нейротрансмиттеры и гормоны. В химии аминокислота — это органическое соединение, которое содержит функциональные группы как амино (-Nh3), так и карбоновой кислоты (-COOH), отсюда и название аминокислота. Белки — это длинные цепи или полимеры определенного типа аминокислоты, известной как альфа-аминокислота. Альфа-аминокислоты уникальны, потому что функциональные группы амино и карбоновых кислот разделены только одним атомом углерода, который обычно является хиральным углеродом.В этой статье мы сосредоточимся исключительно на альфа-аминокислотах, из которых состоят белки. [7] [8]
Белки представляют собой цепочки аминокислот, которые собираются через амидные связи, известные как пептидные связи. Разница в группе боковой цепи или R-группе определяет уникальные свойства каждой аминокислоты. Затем уникальность различных белков определяется тем, какие аминокислоты они содержат, как эти аминокислоты расположены в цепи, и другими сложными взаимодействиями, которые цепь осуществляет с собой и с окружающей средой.Эти полимеры аминокислот способны производить разнообразие, наблюдаемое в жизни.
Существует около 20 000 уникальных генов, кодирующих белок, ответственных за более чем 100 000 уникальных белков в организме человека. Хотя в природе встречаются сотни аминокислот, для производства всех белков, содержащихся в организме человека и в большинстве других форм жизни, необходимо всего около 20 аминокислот. Все эти 20 аминокислот представляют собой L-изомер, альфа-аминокислоты. Все они, кроме глицина, содержат хиральный альфа-углерод.И все эти аминокислоты являются L-изомерами с R-абсолютной конфигурацией, за исключением глицина (без хирального центра) и цистеина (S-абсолютная конфигурация из-за серосодержащей R-группы). Следует упомянуть, что аминокислоты селеноцистеин и пирролизин считаются 21-й и 22-й аминокислотами соответственно. Это недавно открытые аминокислоты, которые могут включаться в белковые цепи во время синтеза рибосомных белков. Пирролойзин жизненно важен; однако люди не используют пирролизин для синтеза белка.После трансляции эти 22 аминокислоты также могут быть модифицированы посредством посттрансляционной модификации, чтобы добавить дополнительное разнообразие в генерацию белков. [8]
От 20 до 22 аминокислот, которые составляют белки, включают:
Из этих 20 аминокислот девять незаменимы:
-
Фенилаланин
-
Валин
-
Триптофан
-
Треонин
-
Метионин
-
Гистидин
-
Лейцин
-
Лизин
Изолейцин
Незаменимые, также известные как незаменимые аминокислоты, можно исключить из рациона.Организм человека может синтезировать эти аминокислоты, используя только незаменимые аминокислоты. Для большинства физиологических состояний здорового взрослого человека указанные выше девять аминокислот являются единственными незаменимыми аминокислотами. Однако такие аминокислоты, как аргинин и гистидин, можно считать условно незаменимыми, поскольку организм не может синтезировать их в достаточных количествах в течение определенных физиологических периодов роста, включая беременность, рост в подростковом возрасте или восстановление после травмы [9].
Механизм
Хотя для синтеза белка человека требуется двадцать аминокислот, люди могут синтезировать только половину этих необходимых строительных блоков.У людей и других млекопитающих есть только генетический материал, необходимый для синтеза ферментов, обнаруженных в путях биосинтеза заменимых аминокислот. Вероятно, есть эволюционное преимущество в удалении длинных путей, необходимых для синтеза незаменимых аминокислот с нуля. Потеряв генетический материал, необходимый для синтеза этих аминокислот, и полагаясь на окружающую среду, чтобы обеспечить эти строительные блоки, эти организмы могут снизить расход энергии, особенно при репликации своего генетического материала.Эта ситуация дает преимущество в выживании; однако это также создает зависимость от других организмов в отношении материалов, необходимых для синтеза белка. [10] [11] [12]
Клиническая значимость
Классификация незаменимых и заменимых аминокислот была впервые представлена в исследованиях питания, проведенных в начале 1900-х годов. Одно исследование (Rose 1957) показало, что человеческое тело способно поддерживать азотный баланс при диете, состоящей только из восьми аминокислот. [13] Эти восемь аминокислот были первой классификацией незаменимых аминокислот или незаменимых аминокислот.В это время ученые смогли идентифицировать незаменимые аминокислоты, проведя исследования кормления очищенными аминокислотами. Исследователи обнаружили, что, когда они исключили из рациона отдельные незаменимые аминокислоты, субъекты не смогли бы расти или поддерживать азотный баланс. Более поздние исследования показали, что некоторые аминокислоты являются «условно незаменимыми» в зависимости от метаболического состояния субъекта. Например, хотя здоровый взрослый может синтезировать тирозин из фенилаланина, у маленького ребенка может не развиться необходимый фермент (фенилаланингидроксилаза) для осуществления этого синтеза, и поэтому они не смогут синтезировать тирозин из фенилаланина, что делает тирозин незаменимым продуктом. незаменимая аминокислота в этих условиях.Эта концепция также появляется при различных болезненных состояниях. По сути, отклонения от стандартного метаболического состояния здорового взрослого человека могут привести организм в такое метаболическое состояние, при котором для баланса азота требуется больше, чем стандартные незаменимые аминокислоты. В целом, оптимальное соотношение незаменимых и заменимых аминокислот требует баланса, зависящего от физиологических потребностей, которые различаются у разных людей. Поиск оптимального соотношения аминокислот в общем парентеральном питании при заболеваниях печени или почек является хорошим примером различных физиологических состояний, требующих различного потребления питательных веществ.Следовательно, термины «незаменимые аминокислоты» и «заменимые аминокислоты» могут вводить в заблуждение, поскольку все аминокислоты могут быть необходимы для обеспечения оптимального здоровья. [1]
При состояниях недостаточного потребления незаменимых аминокислот, таких как рвота или низкий аппетит, могут появиться клинические симптомы. Эти симптомы могут включать депрессию, беспокойство, бессонницу, утомляемость, слабость, задержку роста у молодых и т. Д. Эти симптомы в основном вызваны недостаточным синтезом белка в организме из-за нехватки незаменимых аминокислот.Необходимое количество аминокислот необходимо для выработки нейромедиаторов, гормонов, роста мышц и других клеточных процессов. Эти недостатки обычно присутствуют в более бедных частях мира или у пожилых людей, которым не уделяется должного ухода [2].
Квашиоркор и маразм — примеры более серьезных клинических расстройств, вызванных недоеданием и недостаточным потреблением незаменимых аминокислот. Квашиоркор — это форма недоедания, характеризующаяся периферическими отеками, сухим шелушением кожи с гиперкератозом и гиперпигментацией, асцитом, нарушением функции печени, иммунодефицитом, анемией и относительно неизменным составом мышечных белков.Это результат диеты с недостаточным содержанием белка, но достаточным количеством углеводов. Маразм — это форма недоедания, характеризующаяся истощением, вызванным недостатком белка и недостаточным потреблением калорий в целом. [14]
Повышение квалификации / обзорные вопросы
Рисунок
Родовая структура аминокислот. Внесен и создан Майклом Лопесом, B.S.
Ссылки
- 1.
- Hou Y, Yin Y, Wu G. Необходимость в питании «незаменимых аминокислот» для животных и людей.Exp Biol Med (Maywood). 2015 август; 240 (8): 997-1007. [Бесплатная статья PMC: PMC4935284] [PubMed: 26041391]
- 2.
- Hou Y, Wu G. Adv Nutr. 01 ноября 2018 г .; 9 (6): 849-851. [Бесплатная статья PMC: PMC6247364] [PubMed: 30239556]
- 3.
- Reeds PJ. Незаменимые и незаменимые аминокислоты для человека. J Nutr. 2000 Июл; 130 (7): 1835С-40С. [PubMed: 10867060]
- 4.
- Le DT, Chu HD, Le NQ. Улучшение питательного качества растительных белков с помощью генной инженерии.Curr Genomics. 2016 июн; 17 (3): 220-9. [Бесплатная статья PMC: PMC4869009] [PubMed: 27252589]
- 5.
- Hoffman JR, Falvo MJ. Белок — какой лучше? J Sports Sci Med. 2004 сентябрь; 3 (3): 118-30. [Бесплатная статья PMC: PMC3
- 4] [PubMed: 24482589]
- 6.
- Джуд С., Капур А.С., Сингх Р. Аминокислотный состав и химическая оценка качества белка зерновых культур при поражении насекомыми. Растительная еда Hum Nutr. 1995 сентябрь; 48 (2): 159-67. [PubMed: 8837875]
- 7.
- ЛаПелуса А., Кошик Р. StatPearls [Интернет]. StatPearls Publishing; Остров сокровищ (Флорида): 5 декабря 2020 г. Физиология, белки. [PubMed: 32310450]
- 8.
- Ву Г. Аминокислоты: метаболизм, функции и питание. Аминокислоты. 2009 Май; 37 (1): 1-17. [PubMed: 19301095]
- 9.
- de Koning TJ. Нарушения синтеза аминокислот. Handb Clin Neurol. 2013; 113: 1775-83. [PubMed: 23622400]
- 10.
- Guedes RL, Prosdocimi F, Fernandes GR, Moura LK, Ribeiro HA, Ortega JM.Пути биосинтеза аминокислот и ассимиляции азота: большая делеция генома в ходе эволюции эукариот. BMC Genomics. 2011 22 декабря; 12 Дополнение 4: S2. [Бесплатная статья PMC: PMC3287585] [PubMed: 22369087]
- 11.
- D’Souza G, Waschina S, Pande S, Bohl K, Kaleta C, Kost C. биосинтетические гены у бактерий. Эволюция. 2014 сентябрь; 68 (9): 2559-70. [PubMed: 24910088]
- 12.
- Сигенобу С., Ватанабе Х., Хаттори М., Сакаки И., Исикава Х.Последовательность генома внутриклеточного бактериального симбионта тлей Buchnera sp. APS. Природа. 2000, 7 сентября; 407 (6800): 81-6. [PubMed: 10993077]
- 13.
- ROSE WC. Потребности в аминокислотах взрослого человека. Nutr Abstr Rev.1957 июл; 27 (3): 631-47. [PubMed: 13465065]
- 14.
- Benjamin O, Lappin SL. StatPearls [Интернет]. StatPearls Publishing; Остров сокровищ (Флорида): 19 июля 2020 г., Квашиоркор. [PubMed: 29939653]
Базовый
Структура Гли к Leu Asp к Gln Ала к Трп Тест
себя Автор
односимвольные коды |
The Химия аминокислот Введение Аминокислоты играют центральную роль как строительные блоки белков и как промежуточные звенья в метаболизме. 20 аминокислот, которые содержатся в белки обладают широким спектром химической универсальности. В точное содержание аминокислот и последовательность этих аминокислот конкретный белок, определяется последовательностью оснований в ген, кодирующий этот белок.Химические свойства аминокислот белков определяют биологическую активность белка. Белки не только катализируют все (или большую часть) реакций в живых клетках, они контролировать практически все клеточные процессы. Кроме того, белки содержат в их аминокислотных последовательностях необходимая информация для определения как этот белок сворачивается в трехмерную структуру, и устойчивость полученной конструкции.Поле сворачивания белка и стабильность была критически важной областью исследований в течение многих лет, и остается сегодня одной из величайших неразгаданных загадок. Однако это активно исследуются, и прогресс наблюдается каждый день. Когда мы узнаем об аминокислотах, важно помнить, что из наиболее важных причин для понимания структуры и свойств аминокислот уметь понимать структуру и свойства белка.Мы будем увидеть, что чрезвычайно сложные характеристики даже небольшого, относительно Простые белки — это совокупность свойств аминокислот, которые содержат белок. Верх 10 аминокислот, которые мы можем производить, это аланин, аспарагин, аспарагиновая кислота. кислота, цистеин, глутаминовая кислота, глутамин, глицин, пролин, серин и тирозин. Тирозин вырабатывается из фенилаланина, поэтому при дефиците в рационе в фенилаланине также потребуется тирозин.Незаменимая аминокислота кислоты: аргинин (необходим молодым, но не взрослым), гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан, и валин. Эти аминокислоты необходимы в рационе. Растения, конечно, должен уметь производить все аминокислоты. С другой стороны, люди делают не иметь всех ферментов, необходимых для биосинтеза всех аминокислоты. Зачем изучать эти структуры
и свойства? |
Атомы
в аминокислотах |
Незаменимые аминокислоты: таблица, сокращения и структура
Аминокислота Ala
Аланин, обнаруженный в белке в 1875 году, составляет 30% остатков в шелке.Его низкая реакционная способность способствует простой, удлиненной структуре шелка с небольшим количеством поперечных связей, что придает волокнам прочность, сопротивление растяжению и гибкость. В биосинтезе белков участвует только l-стереоизомер.
Аминокислота Arg
У человека аргинин вырабатывается при переваривании белков. Затем он может быть преобразован организмом в оксид азота, химическое вещество, которое, как известно, расслабляет кровеносные сосуды.
Благодаря своему сосудорасширяющему действию аргинин был предложен для лечения людей с хронической сердечной недостаточностью, высоким уровнем холестерина, нарушением кровообращения и высоким кровяным давлением, хотя исследования по этим направлениям все еще продолжаются.Аргинин также может быть получен синтетическим путем, и родственные аргинину соединения можно использовать для лечения людей с дисфункцией печени из-за их роли в стимулировании регенерации печени. Хотя аргинин необходим для роста, но не для поддержания организма, исследования показали, что аргинин имеет решающее значение для процесса заживления ран, особенно у людей с плохим кровообращением.
Аминокислота Asn
В 1806 году аспарагин был очищен из сока спаржи, что сделало его первой аминокислотой, выделенной из природного источника.Однако только в 1932 году ученые смогли доказать, что аспарагин присутствует в белках. Только l-стереоизомер участвует в биосинтезе белков млекопитающих. Аспарагин важен для удаления токсичного аммиака из организма.
Аминокислота Asp
Обнаруженная в белках в 1868 году аспарагиновая кислота обычно содержится в животных белках, однако только l-стереоизомер участвует в биосинтезе белков. Растворимость этой аминокислоты в воде обусловлена наличием рядом с активными центрами ферментов, таких как пепсин.
Аминокислота Cys
Цистеин особенно богат белками волос, копыт и кератином кожи, который был выделен из мочевого камня в 1810 году и из рога в 1899 году. Впоследствии он был химически синтезирован. и структура решена в 1903–1904 гг.
Серосодержащая тиоловая группа в боковой цепи цистеина является ключевой для его свойств, обеспечивая образование дисульфидных мостиков между двумя пептидными цепями (как в случае с инсулином) или образование петли в одной цепи, влияя на окончательную структуру белка.Две молекулы цистеина, связанные между собой дисульфидной связью, составляют аминокислоту цистин, которая иногда указывается отдельно в общих списках аминокислот. Цистеин вырабатывается в организме из серина и метионина и присутствует только в l-стереоизомере в белках млекопитающих.
Люди с генетическим заболеванием цистинурией не могут эффективно реабсорбировать цистин в кровоток. Следовательно, в их моче накапливается высокий уровень цистина, где он кристаллизуется и образует камни, которые блокируют почки и мочевой пузырь.
Аминокислота Gln
Глутамин был впервые выделен из свекольного сока в 1883 году, выделен из белка в 1932 году и впоследствии химически синтезирован в следующем году. Глютамин — самая распространенная в нашем организме аминокислота, которая выполняет несколько важных функций. У людей глутамин синтезируется из глутаминовой кислоты, и этот этап преобразования жизненно важен для регулирования уровня токсичного аммиака в организме, образуя мочевину и пурины.
Аминокислота Glu
Глутаминовая кислота была выделена из глютена пшеницы в 1866 году и химически синтезирована в 1890 году.Обычно встречается в белках животных, только l-стереоизомер встречается в белках млекопитающих, которые люди могут синтезировать из обычного промежуточного продукта α-кетоглутаровой кислоты. Мононатриевая соль l-глутаминовой кислоты, глутамат натрия (MSG) обычно используется в качестве приправы и усилителя вкуса. Карбоксильная боковая цепь глутаминовой кислоты способна действовать как донор и акцептор аммиака, который токсичен для организма, обеспечивая безопасную транспортировку аммиака в печень, где он превращается в мочевину и выводится почками.Свободная глутаминовая кислота также может разлагаться до диоксида углерода и воды или превращаться в сахара.
Аминокислота Gly
Глицин был первой аминокислотой, выделенной из белка, в данном случае желатина, и единственной неактивной оптически (без d- или l-стереоизомеров). Структурно простейшая из α-аминокислот, она очень инертна при включении в белки. Тем не менее, глицин играет важную роль в биосинтезе аминокислоты серина, кофермента глутатиона, пуринов и гема, жизненно важной части гемоглобина.
His-аминокислота
Гистидин был выделен в 1896 году, и его структура была подтверждена химическим синтезом в 1911 году. Гистидин является прямым предшественником гистамина, а также важным источником углерода в синтезе пуринов. При включении в белки боковая цепь гистидина может действовать как акцептор и донор протонов, передавая важные свойства при объединении с ферментами, такими как химотрипсин, и ферментами, участвующими в метаболизме углеводов, белков и нуклеиновых кислот.
Для младенцев гистидин считается незаменимой аминокислотой, взрослые могут в течение короткого периода времени обходиться без диетического питания, но по-прежнему считается незаменимой.
Иле-аминокислота
Изолейцин был выделен из патоки сахарной свеклы в 1904 году. Гидрофобная природа боковой цепи изолейцина важна для определения третичной структуры белков, в которые он включен.
У людей, страдающих редким наследственным заболеванием, называемым болезнью мочи кленового сиропа, есть дефектный фермент в пути разложения, который является общим для изолейцина, лейцина и валина.Без лечения метаболиты накапливаются в моче пациента, вызывая характерный запах, который и дал название состоянию.
Аминокислота лей
Лейцин был выделен из сыра в 1819 году и из мышц и шерсти в его кристаллическом состоянии в 1820 году. В 1891 году он был синтезирован в лаборатории.
Только l-стереоизомер присутствует в белке млекопитающих и может расщепляться на более простые соединения ферментами организма. Некоторые связывающие ДНК белки содержат области, в которых лейцины расположены в конфигурации, называемые лейциновыми застежками-молниями.
Аминокислота Lys
Лизин был впервые выделен из казеина молочного белка в 1889 году, а его структура была выяснена в 1902 году. Лизин важен для связывания ферментов с коферментами и играет важную роль в функционировании гистонов.
Многие зерновые культуры содержат очень мало лизина, что привело к его дефициту у некоторых групп населения, которые сильно зависят от них в продуктах питания, а также у вегетарианцев и людей, сидящих на низкожирной диете. Следовательно, были предприняты усилия по разработке штаммов кукурузы, богатых лизином.
Met аминокислота
Метионин был выделен из казеина молочного белка в 1922 году, и его структура была решена лабораторным синтезом в 1928 году. Метионин является важным источником серы для многих соединений в организме, включая цистеин и таурин. Связанный с содержанием серы, метионин помогает предотвратить накопление жира в печени и помогает выводить токсины и шлаки метаболизма.
Метионин — единственная незаменимая аминокислота, которая не присутствует в значительных количествах соевых бобов и поэтому производится коммерчески и добавляется во многие продукты из соевого шрота.
Аминокислота Phe
Фенилаланин был впервые выделен из природного источника (ростки люпина) в 1879 году и впоследствии химически синтезирован в 1882 году. Организм человека обычно способен расщеплять фенилаланин на тирозин, однако у людей с наследственным заболеванием фенилкетонурия (PKU), фермент, который выполняет это преобразование, неактивен. Если не лечить, фенилаланин накапливается в крови, вызывая задержку умственного развития у детей. Примерно 10 000 детей рождаются с этим заболеванием, поэтому диета с низким содержанием фенилаланина в раннем возрасте может облегчить его последствия.
Pro аминокислота
В 1900 году пролин был синтезирован химическим путем. На следующий год он был выделен из казеина из молочного белка, и его структура оказалась такой же. Люди могут синтезировать пролин из глутаминовой кислоты, которая присутствует только как l-стереоизомер в белках млекопитающих. Когда пролин включается в белки, его особая структура приводит к резким изгибам или перегибам в пептидной цепи, что в значительной степени способствует окончательной структуре белка. Пролин и его производное гидроксипролин составляют 21% аминокислотных остатков волокнистого белка коллагена, необходимого для соединительной ткани.
Аминокислота Ser
Серин был впервые выделен из белка шелка в 1865 году, но его структура не была установлена до 1902 года. Люди могут синтезировать серин из других метаболитов, включая глицин, хотя только l-стереоизомер присутствует в белках млекопитающих. Серин важен для биосинтеза многих метаболитов и часто важен для каталитической функции ферментов, в которые он включен, включая химотрипсин и трипсин.
Нервные газы и некоторые инсектициды действуют путем объединения с остатком серина в активном центре ацетилхолинэстеразы, полностью ингибируя фермент.Активность эстеразы важна для расщепления нейромедиатора ацетилхолина, в противном случае повышается опасно высокий уровень, что быстро приводит к судорогам и смерти.
Thr аминокислота
Треонин был выделен из фибрина в 1935 году и синтезирован в том же году. Только l-стереоизомер появляется в белках млекопитающих, где он относительно инертен. Хотя он играет важную роль во многих реакциях у бактерий, его метаболическая роль у высших животных, включая человека, остается неясной.
Аминокислота Trp
Структура триптофана, выделенная из казеина (молочного белка) в 1901 году, была установлена в 1907 году, но только l-стереоизомер присутствует в белках млекопитающих. В кишечнике человека бактерии расщепляют пищевой триптофан, выделяя такие соединения, как скатол и индол, которые придают фекалиям неприятный аромат. Триптофан превращается в витамин B3 (также называемый никотиновой кислотой или ниацином), но не в достаточной степени, чтобы поддерживать наше здоровье. Следовательно, мы также должны принимать витамин B3, несоблюдение этого правила приводит к его дефициту, называемому пеллагрой.
Аминокислота Tyr
В 1846 году тирозин был выделен в результате разложения казеина (сырного белка), после чего он был синтезирован в лаборатории и его структура была определена в 1883 году. Присутствует только в l-стереоизомере в белки млекопитающих, люди могут синтезировать тирозин из фенилаланина. Тирозин является важным предшественником гормонов надпочечников адреналина и норадреналина, гормонов щитовидной железы, включая тироксин, а также пигмента волос и кожи меланина.В ферментах остатки тирозина часто связаны с активными центрами, изменение которых может изменить специфичность фермента или полностью уничтожить активность.
Страдающие серьезным генетическим заболеванием фенилкетонурия (ФКУ) неспособны превращать фенилаланин в тирозин, в то время как у пациентов с алкаптонурией метаболизм тирозина нарушен, и моча становится отчетливой и темнеет на воздухе.
Val аминокислота
Структура валина была установлена в 1906 году после его первого выделения из альбумина в 1879 году.В белке млекопитающих присутствует только l-стереоизомер. Валин может разлагаться в организме на более простые соединения, но у людей с редким генетическим заболеванием, называемым болезнью мочи кленового сиропа, неисправный фермент прерывает этот процесс и может оказаться фатальным при отсутствии лечения.
Незаменимые аминокислоты: определение, преимущества и продукты питания
Организму необходимо 20 различных аминокислот для поддержания хорошего здоровья и нормального функционирования. Люди должны получать девять из этих аминокислот, называемых незаменимыми аминокислотами, с пищей.Хорошие диетические источники включают мясо, яйца, тофу, сою, гречку, киноа и молочные продукты.
Аминокислоты — это соединения, которые образуют белки. Когда человек ест пищу, содержащую белок, его пищеварительная система расщепляет белок на аминокислоты. Затем организм комбинирует аминокислоты различными способами для выполнения функций организма.
Здоровый организм может производить другие 11 аминокислот, поэтому они обычно не нуждаются в поступлении в организм с пищей.
Аминокислоты укрепляют мышцы, вызывают химические реакции в организме, транспортируют питательные вещества, предотвращают болезни и выполняют другие функции.Дефицит аминокислот может привести к снижению иммунитета, проблемам с пищеварением, депрессии, проблемам с фертильностью, снижению умственной активности, замедлению роста у детей и многим другим проблемам со здоровьем.
Каждая из незаменимых аминокислот играет различную роль в организме, и симптомы дефицита соответственно различаются.
Существует много типов незаменимых аминокислот, в том числе:
Лизин
Лизин играет жизненно важную роль в наращивании мышц, поддержании прочности костей, помощи в восстановлении после травм или хирургических операций, а также в регулировании гормонов, антител и ферментов.Он также может иметь противовирусное действие.
Существует не так много исследований дефицита лизина, но исследование на крысах показывает, что дефицит лизина может привести к вызванной стрессом тревоге.
Гистидин
Гистидин способствует росту, образованию клеток крови и восстановлению тканей. Он также помогает поддерживать особое защитное покрытие нервных клеток, которое называется миелиновой оболочкой.
В организме гистидин превращается в гистамин, который имеет решающее значение для иммунитета, репродуктивного здоровья и пищеварения.Результаты исследования, в котором приняли участие женщины с ожирением и метаболическим синдромом, показывают, что добавки гистидина могут снизить ИМТ и инсулинорезистентность.
Дефицит может вызвать анемию, а низкий уровень в крови чаще встречается у людей с артритом и заболеванием почек.
Треонин
Треонин необходим для здоровья кожи и зубов, так как он входит в состав зубной эмали, коллагена и эластина. Он помогает метаболизму жиров и может быть полезен людям с расстройством желудка, тревожностью и легкой депрессией.
Исследование 2018 года показало, что дефицит треонина у рыб привел к снижению устойчивости этих животных к болезням.
Метионин
Метионин и заменимая аминокислота цистеин играют важную роль в здоровье и эластичности кожи и волос. Метионин также помогает сохранять ногти крепкими. Он способствует правильному всасыванию селена и цинка и удалению тяжелых металлов, таких как свинец и ртуть.
Валин
Валин необходим для умственной концентрации, координации мышц и эмоционального спокойствия.Люди могут использовать добавки валина для роста мышц, восстановления тканей и получения энергии.
Дефицит может вызвать бессонницу и снижение умственной функции.
Изолейцин
Изолейцин помогает при заживлении ран, повышении иммунитета, регуляции уровня сахара в крови и выработке гормонов. Он в основном присутствует в мышечной ткани и регулирует уровень энергии.
Пожилые люди могут быть более склонны к дефициту изолейцина, чем молодые люди. Этот недостаток может вызвать мышечное истощение и тряску.
Лейцин
Лейцин помогает регулировать уровень сахара в крови и способствует росту и восстановлению мышц и костей.Он также необходим для заживления ран и выработки гормона роста.
Дефицит лейцина может вызвать кожную сыпь, выпадение волос и усталость.
Фенилаланин
Фенилаланин помогает организму использовать другие аминокислоты, а также белки и ферменты. Организм превращает фенилаланин в тирозин, который необходим для определенных функций мозга.
Дефицит фенилаланина, хотя и встречается редко, может привести к плохой прибавке в весе у младенцев. Это также может вызвать экзему, усталость и проблемы с памятью у взрослых.
Фенилаланин часто входит в состав искусственного подсластителя аспартама, который производители используют для приготовления диетических газированных напитков. Большие дозы аспартама могут повышать уровень фенилаланина в головном мозге, вызывать беспокойство и нервозность, а также влиять на сон.
Люди с редким генетическим заболеванием, называемым фенилкетонурией (ФКУ), не могут метаболизировать фенилаланин. В результате им следует избегать употребления продуктов с высоким содержанием этой аминокислоты.
Триптофан
Триптофан необходим для нормального роста младенцев и является предшественником серотонина и мелатонина.Серотонин — нейромедиатор, регулирующий аппетит, сон, настроение и боль. Мелатонин также регулирует сон.
Триптофан является седативным средством и входит в состав некоторых снотворных. Одно исследование показывает, что добавление триптофана может улучшить умственную энергию и эмоциональную обработку у здоровых женщин.
Дефицит триптофана может вызвать состояние, называемое пеллагрой, которое может привести к слабоумию, кожной сыпи и проблемам с пищеварением.
Многие исследования показывают, что низкий уровень белка и незаменимых аминокислот влияет на мышечную силу и работоспособность.
Согласно исследованию 2014 года, недостаток незаменимых аминокислот может привести к снижению мышечной массы у пожилых людей.
Дополнительное исследование показывает, что аминокислотные добавки могут помочь спортсменам восстановиться после тренировки.
Раньше врачи считали, что люди должны есть продукты, содержащие все девять незаменимых аминокислот за один прием пищи.
В результате, если человек не ел мясо, яйца, молочные продукты, тофу или другую пищу со всеми незаменимыми аминокислотами, необходимо было комбинировать два или более растительных продукта, содержащих все девять, таких как рис и бобы.
Однако сегодня эта рекомендация иная. Люди, которые придерживаются вегетарианской или веганской диеты, могут получать свои незаменимые аминокислоты из различных растительных продуктов в течение дня, и им не обязательно есть их все вместе за один прием пищи.
Поделиться на Pinterest Человек должен поговорить со своим врачом, прежде чем принимать добавки с незаменимыми аминокислотами.Хотя 11 аминокислот не являются необходимыми, людям могут потребоваться некоторые из них, если они находятся в состоянии стресса или болеют. В это время организм может быть не в состоянии производить достаточное количество этих аминокислот, чтобы удовлетворить повышенную потребность.Эти аминокислоты являются «условными», что означает, что они могут потребоваться человеку в определенных ситуациях.
Иногда люди могут захотеть принимать добавки с незаменимыми аминокислотами. Лучше сначала посоветоваться с врачом относительно безопасности и дозировки.
Несмотря на то, что дефицит незаменимых аминокислот возможен, большинство людей может получить их в достаточном количестве, соблюдая диету, включающую белок.
Продукты из следующего списка являются наиболее распространенными источниками незаменимых аминокислот:
- Лизин содержится в мясе, яйцах, сое, черной фасоли, киноа и семенах тыквы.
- Мясо, рыба, птица, орехи, семена и цельнозерновые продукты содержат большое количество гистидина.
- Творог и зародыши пшеницы содержат большое количество треонина.
- Метионин содержится в яйцах, зернах, орехах и семенах.
- Валин содержится в сое, сыре, арахисе, грибах, цельнозерновых и овощах.
- Изолейцин содержится в мясе, рыбе, птице, яйцах, сыре, чечевице, орехах и семенах.
- Источниками лейцина являются молочные продукты, соя, фасоль и бобовые.
- Фенилаланин содержится в молочных продуктах, мясе, птице, сое, рыбе, бобах и орехах.
- Триптофан содержится в большинстве продуктов с высоким содержанием белка, включая зародыши пшеницы, творог, курицу и индейку.
Это лишь несколько примеров продуктов, богатых незаменимыми аминокислотами. Все продукты, содержащие белок, будь то растительного или животного происхождения, будут содержать по крайней мере некоторые из незаменимых аминокислот.
Потребление незаменимых аминокислот имеет решающее значение для хорошего здоровья.
Ежедневное употребление разнообразных продуктов, содержащих белок, — лучший способ для людей получать достаточное количество незаменимых аминокислот.При современной диете и доступе к большому разнообразию продуктов дефицит редко встречается у людей, которые в целом имеют хорошее здоровье.
Перед приемом пищевых добавок следует всегда проконсультироваться с врачом.
20 аминокислот, входящих в состав белков | Улучшение жизни с помощью аминокислот | О нас | Глобальный веб-сайт Ajinomoto Group
Как известно, различные аминокислоты являются основными компонентами, из которых состоят белки. Аминокислоты составляют важную часть человеческого тела и диеты.Они чрезвычайно важны для правильного функционирования человеческого тела; следовательно, важно понимать, сколько аминокислот составляют белки. Давайте перейдем к выяснению, сколько аминокислот действительно составляют белки.
Сколько аминокислот помогает вырабатывать белки?
В природе идентифицировано около 500 аминокислот, но только 20 аминокислот составляют белки, обнаруженные в организме человека. Давайте узнаем обо всех этих 20 аминокислотах и типах различных аминокислот.
Типы всех аминокислот
Все 20 аминокислот подразделяются на две разные аминокислотные группы.Незаменимые и заменимые аминокислоты вместе составляют 20 аминокислот. Из 20 аминокислот 9 являются незаменимыми аминокислотами, а остальные — заменимыми аминокислотами. Давайте посмотрим на каждую аминокислоту в соответствии с их классификацией.
Незаменимые аминокислоты
BCAA (валин, лейцин и изолейцин)
Аминокислоты с разветвленной цепью (BCAA) представляют собой группу из трех аминокислот (валин, лейцин и изолейцин), которые имеют молекулярную структуру с разветвлением.BCAA богаты мышечными белками, стимулируют рост мышц в организме и обеспечивают энергию во время упражнений.
Лизин
Лизин — одна из наиболее часто упоминаемых незаменимых аминокислот. Такие продукты, как хлеб и рис, как правило, содержат мало лизина. Например, по сравнению с идеальным аминокислотным составом в пшенице мало лизина. Университет Организации Объединенных Наций провел исследование людей в развивающихся странах, которые зависят от пшеницы как источника белка, и обнаружил нехватку лизина в их рационе.Недостаток лизина и других аминокислот может привести к серьезным проблемам, таким как задержка роста и тяжелые заболевания.
Треонин
Незаменимая аминокислота, которая используется для создания активного центра ферментов.
Фенилаланин
Незаменимая аминокислота, которая используется для производства многих типов полезных аминов.
метионин
Незаменимая аминокислота, которая используется для производства множества различных веществ, необходимых организму.
Гистидин
Незаменимая аминокислота, используемая для производства гистамина.
Триптофан
Незаменимая аминокислота, используемая для производства многих типов полезных аминов.
Незаменимые аминокислоты
Глютамин
Глютамин — одна из самых распространенных аминокислот в организме. Глютамин защищает желудок и желудочно-кишечный тракт. В частности, глутамин используется для выработки энергии в желудочно-кишечном тракте. Глютамин способствует метаболизму алкоголя для защиты печени.
Аспартат
Аспартат — одна из аминокислот, наиболее пригодных для получения энергии.Аспартат — одна из аминокислот, наиболее близко расположенных к циклу трикарбоновых кислот (ТСА) в организме, который производит энергию. Цикл TCA подобен двигателю, который приводит в движение автомобили. Каждая клетка нашего тела производит энергию.
Глутамат
Бульон комбу, используемый в японской кулинарии, содержит глутамат. Глутамат является основой умами, а свободный глутамат содержится в комбу, помидорах и сыре. Внутри организма глутамат используется как важный источник незаменимых аминокислот.
Аргинин
Аргинин играет важную роль в открытии вен для улучшения кровотока. Оксид азота, открывающий вены, сделан из аргинина. Аргинин — полезная аминокислота для удаления избытка аммиака из организма. Аргинин повышает иммунитет.
Аланин
Аланин поддерживает функцию печени. Аланин используется для производства глюкозы, необходимой организму. Аланин улучшает метаболизм алкоголя.
Proline
Пролин — одна из аминокислот, содержащихся в коллагене, который составляет ткань кожи.Пролин — одна из важнейших аминокислот естественного увлажняющего фактора (NMF), который сохраняет кожу влажной.
Цистеин
Цистеин уменьшает количество производимой черной пигментации меланина. Цистеин много в волосах на голове и теле. Цистеин увеличивает количество желтого меланина, производимого вместо черного меланина.
Аспарагин
Аминокислота, обнаруженная из спаржи. И аспарагин, и аспартат расположены близко к циклу трикарбоновой кислоты (TCA), который производит энергию.
Серин
Аминокислота, используемая для производства фосфолипидов и глицериновой кислоты.
Глицин
Незаменимая аминокислота, вырабатываемая в организме. В организме много глицина. Он действует как передатчик в центральной нервной системе и помогает регулировать такие функции организма, как движение и сенсорное восприятие. Глицин составляет одну треть коллагена.
Тирозин
Тирозин используется для получения многих типов полезных аминов. Тирозин относится к группе ароматических аминокислот вместе с фенилаланином и триптофаном.
Контент, который может вам понравиться
Что такое аминокислоты?
Аминокислоты — незаменимые соединения, общие для всех живых существ, от микробов до людей. Все живые тела содержат одни и те же 20 типов аминокислот. Что такое …
Факты об аминокислотах
Часто задаваемые вопросы об аминокислотахОбщие вопросы об аминокислотахВ чем разница между аминокислотой и пептидом? Белки состоят из сотен…
аминокислот, эволюция | Изучайте науку в Scitable
Бауманн, П. Биология бактериоцит-ассоциированных эндосимбионтов сокососущих насекомых растений. Ежегодный обзор микробиологии 59 , 155–189 (2005) DOI: 10.1146 / annurev.micro.59.030804.121041.
Бок, А. Биосинтез селенопротеидов — обзор. Биофакторы 11 , 77–78 (2000).
Fani, R. et al. Роль слияния генов в эволюция метаболических путей: случай биосинтеза гистидина. BMC Evolutionary Biology 7 Приложение 2 , S4 (2007) DOI: 10.1186 / 1471-2148-7-S2-S4.
Гордон, А. Х., Martin, A.J. и Synge, R.L. Распределительная хроматография в исследовании белковые составляющие. Биохимический журнал 37 , 79–86 (1943).
Эрнандес-Монтес, G. et al. Скрытый универсал распределение аминокислотных биосинтетических сетей: геномный взгляд на их происхождение и эволюция. Геном Биология 9 , R95 (2008) DOI: 10.1186 / гб-2008-9-6-r95.
Горовиц, Н. H. Об эволюции биохимических синтезов. Труды Национального Академия наук 31 , 153-157 (1945).
Мерино, Э., Дженсен, Р. А. и Янофски, С. Эволюция бактериальных оперонов trp и их регуляция. Текущее мнение в микробиологии 11 , 78–86 (2008) doi: 10.1016 / j.mib.2008.02.005.
Миллер, С. Л. Производство аминокислот в возможных примитивных земных условиях. Наука 117 , 528–529 (1953).
Pal, C. et al. Случайность и необходимость в эволюция минимальных метаболических сетей. Природа 440 , 667–670 (2006) DOI: 10,1038 / природа04568.
Ридс, П. Дж. Незаменимые и незаменимые аминокислоты для человека. Журнал питания 130 , 1835С – 1840С (2000 г.).
Шигенобу, С. et al. Последовательность генома внутриклеточный бактериальный симбионт тлей Buchnera sp.APS. Nature 407 , 81–86 (2000) DOI: 10.1038 / ng986.
Шринивасан, G., James, C.M. & Krzycki, J.A. Пирролизин, кодируемый UAG в архее: Зарядка специализированной тРНК, декодирующей UAG. Наука 296 , 1459–1462 (2002) DOI: 10.1126 / science.1069588.
Teichmann, S.A. et al. Эволюция и структура анатомия низкомолекулярных путей метаболизма Escherichia coli . Журнал Молекулярная биология 311 , 693–708 (2001) DOI: 10.1006 / jmbi.2001.4912.
Веласко, А. М., Легина, Дж. И., Ласкано, А. Молекулярная эволюция лизина. биосинтетические пути. Журнал Молекулярная эволюция 55 , 445–459 (2002) DOI: 10.1007 / s00239-002-2340-2.
Xie, G. et al. Древнее происхождение триптофана оперон и динамика эволюционных изменений. Обзоры по микробиологии и молекулярной биологии 67 , 303–342 (2003) DOI: 10.1128 / MMBR.67.3.303-342.2003.
Общие сведения об аминокислотах
Общие сведения об аминокислотах
Обзор
Аминокислоты — это химические единицы или «строительные блоки», из которых состоят белки. Они также являются конечными продуктами переваривания белков или гидролиза. Аминокислоты содержат около 16 процентов азота. Химически это то, что отличает их от двух других основных питательных веществ, сахаров и жирных кислот, которые не содержат азота.
Чтобы понять, насколько жизненно важны аминокислоты, вы должны понимать, насколько важны белки для жизни.Это белок, который обеспечивает структуру всего живого. Каждый живой организм, от самого крупного животного до мельчайшего микроба, состоит из белка. В различных формах белок участвует в жизненно важных химических процессах, поддерживающих жизнь.
Люди часто не осознают свою потребность в аминокислотах, потому что не осознают, насколько загружен человеческий организм.
• Каждую секунду костный мозг производит 2,5 миллиона эритроцитов.
• Каждые четыре дня происходит замена большей части слизистой оболочки желудочно-кишечного тракта и тромбоцитов.
• Большинство белых клеток заменяется за десять дней.
• Человек имеет эквивалент новой кожи за двадцать четыре дня и костного коллагена через тридцать лет.
Для всех этих постоянных ремонтных работ необходимы аминокислоты.
У вас дефицит аминокислот или проблемы с перевариванием аминокислот?
Обратитесь в клинику ISM для консультации по вопросам здоровья для разработки индивидуальной оздоровительной программы.
Белки — необходимая часть каждой живой клетки тела. Наряду с водой, белок составляет большую часть веса нашего тела.
- В организме человека белковые вещества составляют мышцы, связки, сухожилия, органы, железы, ногти, волосы и многие жизненно важные жидкости организма и необходимы для роста костей.
- Ферменты и гормоны, которые катализируют и регулируют все процессы в организме, являются белками.
- Белки помогают регулировать водный баланс организма и поддерживать надлежащий внутренний pH. Они способствуют обмену питательных веществ между межклеточными жидкостями и тканями, кровью и лимфой.Дефицит белка может нарушить водный баланс организма, вызывая отек.
- Белки составляют структурную основу хромосом, через которую генетическая информация передается от родителей к потомству. Генетический «код», содержащийся в ДНК каждой клетки, на самом деле является информацией о том, как производить белки этой клетки.
После переваривания белка в желудке аминокислоты попадают в кровь. Попадая в кровь, аминокислоты переносятся как эритроцитами, так и жидкой частью крови, называемой плазмой.Таким образом, аминокислоты распределяются по всем тканям организма, где различные клетки тела берут то, что им необходимо для восстановления и преобразования белковых структур, в которых они нуждаются.
В крови постоянно содержатся аминокислоты. Пост не очищает их, а диета с высоким содержанием белка не увеличивает их существенно. Организм постоянно нуждается в белках и аминокислотах, и он поддерживает довольно однородный баланс.
(a) Аминокислоты как белковый субстрат
Белки представляют собой цепочки аминокислот, связанных вместе так называемыми пептидными связями.Каждый отдельный тип белка состоит из определенной группы аминокислот в определенном химическом расположении. Именно конкретные аминокислоты и способ их последовательного соединения придают белкам, из которых состоят различные ткани, их уникальные функции и свойства. Каждый белок в организме адаптирован для определенной потребности; белки не взаимозаменяемы.
Белки, входящие в состав человеческого тела, не получают напрямую с пищей. Скорее, диетический белок расщепляется на составляющие его аминокислоты, которые затем организм использует для создания необходимых ему белков.Таким образом, незаменимыми питательными веществами являются аминокислоты, а не белок.
(b) Аминокислоты в метаболизме организма
Существуют и другие аминокислоты, которые важны для метаболических функций.
- Некоторые из них, такие как цитрулин, глутатион, орнитин и таурин, могут быть подобны (или побочными продуктами) аминокислотам, строящим белок.
- Некоторые действуют как нейротрансмиттеры или как предшественники нейротрансмиттеров, химических веществ, передающих информацию от одной нервной клетки к другой.Таким образом, мозгу необходимы определенные аминокислоты для получения и отправки сообщений.
- Аминокислоты также позволяют витаминам и минералам выполнять свою работу должным образом. Даже если витамины и минералы усваиваются и усваиваются организмом, они не могут быть эффективными, если не присутствуют необходимые аминокислоты. Например, низкий уровень аминокислоты тирозина может привести к дефициту железа.
Как мы классифицируем аминокислоты?
Существует примерно двадцать восемь общеизвестных аминокислот, которые комбинируются различными способами для создания тысяч различных типов белков, присутствующих во всех живых существах.В организме человека печень производит около 80 процентов необходимых аминокислот. Остальные 20 процентов должны быть получены из рациона. Их называют незаменимыми аминокислотами. Незаменимые аминокислоты, которые должны поступать в организм с пищей:
- гистидин
- изолейцин
- лейцин
- лизин
- метионин
- фенилаланин
- треонин
- триптофан
- валин
Заменимые аминокислоты, которые могут быть произведены в организме из других аминокислот, полученных из пищевых источников, включают:
- аланин
- глутамин
- аспарагин
- глицин
- цитруллин
- орнитин
- цистеин
- пролин
- цистин
- серин
- гамма-аминомасляная кислота
- таурин
- глутаминовая кислота
- тирозин
Тот факт, что они названы «несущественными», не означает, что они не нужны, только то, что они не обязательно должны быть получены с пищей, потому что организм может производить их по мере необходимости.А заменимые аминокислоты могут стать «незаменимыми» при определенных условиях. Например, заменимые аминокислоты цистеин и тирозин производятся из незаменимых аминокислот метионина и фенилаланина. Если метионин и фенилаланин недоступны в достаточных количествах, цистеин и тирозин становятся незаменимыми в рационе.
Процесс сборки аминокислот / белков
Процессы сборки аминокислот для производства белков и расщепления белков на отдельные аминокислоты для использования организмом являются непрерывными.Когда нам нужно больше ферментных белков, организм производит больше ферментных белков; когда нам нужно больше клеток, организм производит больше белков для клеток. Эти разные типы белков производятся по мере необходимости. Если в организме истощатся запасы какой-либо из незаменимых аминокислот, он не сможет производить белки, которым требуются эти аминокислоты. Недостаточное количество даже одной незаменимой аминокислоты может препятствовать синтезу и снижению уровня необходимых белков в организме. Кроме того, все незаменимые аминокислоты должны присутствовать в рационе одновременно, чтобы другие аминокислоты использовались.
Как могла возникнуть такая ситуация? Проще, чем вы думаете. Многие факторы могут способствовать дефициту незаменимых аминокислот, даже если вы придерживаетесь хорошо сбалансированной диеты, содержащей достаточно белка. Нарушение всасывания, инфекции, травмы, стресс, употребление наркотиков, возраст и дисбаланс других питательных веществ — все это может повлиять на доступность незаменимых аминокислот в организме. Недостаточное потребление витаминов и минералов, особенно витамина С, может нарушить абсорбцию аминокислот в нижней части тонкого кишечника.Витамин B6 также необходим для транспорта аминокислот в организме.
Если ваша диета не сбалансирована должным образом, то есть если она рано или поздно не обеспечивает достаточного количества незаменимых аминокислот, это станет очевидным как физическое расстройство. Однако это не означает, что диета, содержащая огромное количество белка, является ответом.