Работа для мозга: Устройство и работа мозга – курс на ПостНауке

10 способов улучшить ее простыми способами

Как улучшить работу мозга простыми способами? Рассказываем, какие наши привычки повышают его эффективность. Другими словами, что же любит наш мозг.


1. Нагружайте мозг работой 


Чем больше трудной работы ему достается, тем лучше он работает. Так что чем сложнее задача, тем лучше, даже если «мозги плавятся» 🙂 Но задачи, которыми вы его нагружаете, нужно выбирать правильно – согласно вашим интересам и способностям.


2. Не давите на него обязаловкой


Ваш мозг намного лучше работает, когда не испытывает психологического давления. Есть вещи, которые важно сделать, не взирая на трудности, а есть задачи, которые можно отложить. Отложите. Вернетесь тогда, когда почувствуете силы и желание.

Когда мозг занимается тем, чем хочет, он становится намного эффективнее. Вот почему выбирать профессию важно по душе 

Не можете разобраться с проблемой и чувствуете, что топчетесь на месте? Отвлекитесь и займитесь чем-то другим. Решение может прийти к вам неожиданно!


3. Давайте мозгу разнообразие


Возможность переключиться – чудесный способ сделать вашу умственную деятельность эффективнее. Работа в разных режимах, новая деятельность и новые впечатления – все это хорошие стимулы для мозга.

Профессия, хобби, спорт, поездки, общение – все это делает вас умнее. Даже дегустация блюд в новом ресторане. Ну не чудесно ли? 


Многократно возросшие объемы информации требуют развитых памяти, внимательности, гибкости восприятия. Сейчас информации так много, что важны не знания, а умение искать, вычленять нужное и правильно этим пользоваться.


5. Сформулируйте цель 


Мозг сразу же начнет фокусироваться на способах ее достижения, замечать возможности и отбирать нужную информацию. Именно на этом и построен феномен успеха методов коучинга.

Составьте список ваших мотиваторов (начиная с самых банальных) и регулярно балуйте себя.


6. Добавьте позитивных эмоций


Небольшие спонтанные моменты радости побуждают мозг к работе. Гормоны радости – дофамин, окситоцин и эндорфин – отличные стимуляторы. Они не только повысят ваш тонус и настроение, но и ускорят мозговые процессы.

Читайте також

👑

Пт., 16/11 Кар’єра

В чем фокус? Ловушки мозга, которые помогают и мешают вашей карьере


7. Двигайтесь


Работа мозга сразу станет эффективней. Лучше кровообращение – больше кислорода и питания клеткам мозга – быстрее идут биохимические процессы – больше энергии и питания. Все взаимосвязано! Мозг хочет, чтобы мы были здоровыми и счастливыми, поэтому вознаграждает нас за победу над апатией и ленью способностью быстро мыслить и решать трудные задачи.


8. Заведите полезные ритуалы и привычки


Мозг любит привыкать – чем больше мы делаем автоматически, тем больше ресурса высвобождаем для сложных задач. В этом плане очень полезны любые привычки, которые помогут без волевых усилий вести полезный для мозга образ жизни.

Навык рано вставать, ходить в зал, читать и учиться облегчит вашему мозгу освоение новых задач.

Но в нашей жизни очень много ситуаций, которые требуют от нас способностей искать новые решения. Это очень перегружает мозг.

Не старайтесь сразу освоить все на новом месте работы или учебы. Привыкайте, делайте маленькие шаги.

Помните, что привычки вырабатываются постепенно. Входите в новую должность и новый коллектив по мере привыкания.

Но будьте осторожны! Именно потому, что мозг любит все привычное, он создает стереотипы поведения. Это мешает вам искать нестандартные решения и внедрять новый полезный опыт.


9. Найдите творческое хобби


Творчество – топливо для мозга. Хотите дать ему передышку, выйти за рамки, включить креатив? Сочиняйте, изучайте, рисуйте, мастерите, в общем – созидайте. Даже если это невозможно монетизировать и никто не оценит результатов.


10. Делитесь информацией


Работа мозга – это постоянный обмен. Не просто получайте информацию, но и делитесь ею – этот принцип поможет постоянно держать себя в тонусе.

Читайте также

Почему мы принимаем неверные решения и как этого избежать?

В чем фокус? Ловушки мозга, которые помогают и мешают вашей карьере

Як сфокусуватися в інформаційному шумі? Конспект книги «Не турбувати!»

Карта сайта

Карта сайта
  • О компании
    • Информация о компании
    • История
    • Миссия
    • Руководство
    • Правовая информация
    • Специалисты
    • Вакансии
  • Новости

    Новости Научного центра персонализированной психиатрии

    • Видеобеседы наших специалистов
    • Истории жизни с болезнью
    • Лекции по психиатрии
    • Советы психиатров
  • Услуги и цены
    • Психиатрия
    • Психотерапия
    • Психосоциальная реабилитация
    • Психообразование
  • Словарь понятий
    • Генетика
    • Личность и ее характеристики
    • Нейрофизиология
    • Психические процессы
    • Психические состояния
    • Психические и поведенческие расстройства
    • Психофармакотерапия
  • Публикации
    • Лекции по психиатрии
    • Научные публикации
    • Наши публикации на Фейсбуке
    • Популярные публикации
    • Тезисы конференции «Персонализированная психиатрия: современные возможности генетики в психиатрии»
  • Видео

    Видео PersonPsy

    • Видеобеседы
    • Видеовстречи
    • Конференция по персонализированной психиатрии

      Конференция по персонализированной психиатрии впервые была проведена 2-3 ноября 2015 года в Москве. Открыл конференцию известный врач Рошаль Леонид Михайлович. Конференция посвящена 80-летию Дроздова Эдуарда Семеновича

    • Наши специалисты на TV
    • Популярные лекции по психиатрии
    • Семинары по аутизму
    • Семинары по деменции
    • Семинары для людей с транссексуализмом
  • Контакты
    • Контактная информация
    • Реквизиты
    • Задать вопрос

Как работает мозг? — InformedHealth.

org

Создано: 8 октября 2009 г.; Последнее обновление: 31 октября 2018 г.; Следующее обновление: 2021.

Мозг работает как большой компьютер. Он обрабатывает информацию, которую получает от органов чувств и тела, и отправляет сообщения обратно в тело. Но мозг может делать гораздо больше, чем машина: люди думают и испытывают эмоции своим мозгом, и это корень человеческого интеллекта.

Человеческий мозг размером примерно с два сжатых кулака и весит около 1,5 кг. Внешне он немного похож на большой грецкий орех, со складками и щелями. Мозговая ткань состоит примерно из 100 миллиардов нервных клеток (нейронов) и одного триллиона вспомогательных клеток, которые стабилизируют ткань.

Существуют различные отделы головного мозга, каждый из которых выполняет свои функции:

  • головной мозг

  • промежуточный мозг, включая таламус, гипоталамус и гипофиз

  • средний мозг, включая средний мозг и продолговатый мозг

  • мозжечок

Структура головного мозга

Головной мозг состоит из правой половины и левой половины, известных как правое и левое полушария. Два полушария соединены толстым пучком нервных волокон, называемым мозолистым телом. Каждое полушарие состоит из шести областей (долей), которые выполняют разные функции. Головной мозг контролирует движение и обрабатывает сенсорную информацию. Здесь производятся сознательные и бессознательные действия и чувства. Он также отвечает за речь, слух, интеллект и память.

Функции двух полушарий существенно различаются: в то время как левое полушарие отвечает за речь и абстрактное мышление у большинства людей, правое полушарие обычно отвечает за пространственное мышление или образы. Правое полушарие мозга контролирует левую сторону тела, а левое полушарие мозга контролирует правую сторону тела. Это означает, что повреждение левого полушария вследствие инсульта, например, может привести к параличу правой стороны тела.

Левая кора головного мозга отвечает за речь и язык. Правая кора головного мозга предоставляет пространственную информацию, например, где в данный момент находится ваша нога. Таламус обеспечивает головной мозг сенсорной информацией от кожи, глаз и ушей, а также другой информацией. Гипоталамус регулирует такие вещи, как голод, жажду и сон. Вместе с гипофизом он также регулирует гормоны в организме.

Ствол головного мозга передает информацию между головным мозгом, мозжечком и спинным мозгом, а также контролирует движения глаз и выражение лица. Он также регулирует жизненно важные функции, такие как дыхание, кровяное давление и сердцебиение.

Мозжечок координирует движения и отвечает за равновесие.

Как мозг снабжается кровью?

Мозг нуждается в постоянном притоке достаточного количества кислорода, глюкозы и других питательных веществ. По этой причине он имеет особенно хорошее кровоснабжение. Каждая сторона мозга получает кровь по трем артериям:

  • Спереди передняя мозговая артерия кровоснабжает ткани за лбом и под макушкой (верхняя часть головы).

  • Средняя мозговая артерия важна для сторон и областей, расположенных дальше внутри мозга. Передняя и средняя мозговые артерии отделяются от внутренней сонной артерии, крупного кровеносного сосуда на шее.

  • Задняя мозговая артерия кровоснабжает заднюю часть головы, нижнюю часть мозга и мозжечок. Он снабжается кровью из позвоночных артерий, которые также являются крупными артериями шеи.

Прежде чем три артерии достигнут «своей» области мозга, где они разделятся на более мелкие ответвления, они располагаются близко друг к другу под мозгом. В этой области они соединены друг с другом более мелкими кровеносными сосудами, образуя структуру, похожую на транспортную развязку. Артерии соединены друг с другом и в других областях. Преимущество этих соединений заключается в том, что проблемы с кровоснабжением головного мозга могут быть в некоторой степени компенсированы: например, если ветвь артерии постепенно сужается, кровь все еще может поступать к той части мозга, которую она снабжает кровью, по этим альтернативным путям. (коллатеральный кровоток).

Мельчайшие ответвления (капилляры) артерий головного мозга снабжают клетки мозга кислородом и питательными веществами из крови, но они не пропускают другие вещества так же легко, как аналогичные капилляры в остальном теле. Медицинский термин для этого явления — «гематоэнцефалический барьер». Например, он может защитить нежный мозг от токсичных веществ в крови.

После поступления кислорода в клетки бедная кислородом кровь оттекает по венам головного мозга (церебральные вены). Вены несут кровь к более крупным кровеносным сосудам, известным как пазухи. Стенки пазухи укреплены прочной оболочкой (твердой мозговой оболочкой), которая также помогает им сохранять свою форму. Это держит их постоянно открытыми и облегчает приток крови к венам на шее.

Источники

  • Менче Н. (ред.) Biologie Anatomie Physiologie. Мюнхен: Urban & Fischer/Elsevier; 2012.

  • Pschyrembel W. Klinisches Wörterbuch. Берлин: Де Грюйтер; 2014.

  • Шмидт Р. , Ланг Ф., Хекманн М. Physiologie des Menschen: mit Pathophysiologie. Гейдельберг: Спрингер; 2011.

  • Информация о здоровье IQWiG написана с целью помочь люди понимают преимущества и недостатки основных вариантов лечения и здоровья услуги по уходу.

    Поскольку IQWiG является немецким институтом, некоторая информация, представленная здесь, относится к Немецкая система здравоохранения. Пригодность любого из описанных вариантов у конкретного случае можно определить, поговорив с врачом. Мы не предлагаем индивидуальные консультации.

    Наша информация основана на результатах качественных исследований. Это написано команда медицинских работников, ученых и редакторов, а также проверенных внешними экспертами. Вы можете найти подробное описание того, как наша медицинская информация создается и обновляется в наши методы.

Забытая часть памяти

Воспоминания делают нас такими, какие мы есть. Они формируют наше понимание мира и помогают нам предсказывать, что грядет. Уже более века исследователи работают над тем, чтобы понять, как формируются воспоминания, а затем фиксируются для воспроизведения в последующие дни, недели или даже годы. Но эти ученые, возможно, рассматривали только половину картины. Чтобы понять, как мы помним, мы должны также понять, как и почему мы забываем.

Часть перспективы природы: мозг

Примерно десять лет назад большинство исследователей считали, что забывание — это пассивный процесс, при котором неиспользованные воспоминания со временем распадаются, как фотография, оставленная на солнце. Но затем несколько исследователей, изучавших память, начали натыкаться на результаты, которые, казалось, противоречили этому постулату, существовавшему десятилетиями. Они начали выдвигать радикальную идею о том, что мозг создан для того, чтобы забывать.

Растущий объем работ, созданных за последнее десятилетие, предполагает, что потеря воспоминаний не является пассивным процессом. Скорее забывание кажется активным механизмом, который постоянно работает в мозгу. У некоторых — возможно, даже у всех — животных стандартное состояние мозга — не помнить, а забывать. И лучшее понимание этого состояния может привести к прорыву в лечении таких состояний, как тревога, посттравматическое стрессовое расстройство (ПТСР) и даже болезнь Альцгеймера.

«Что такое память без забывания?» — спрашивает Оливер Хардт, когнитивный психолог, изучающий нейробиологию памяти в Университете Макгилла в Монреале, Канада. «Это невозможно», — говорит он. «Чтобы иметь правильную функцию памяти, у вас должна быть забывчивость».

Биология забывания

Различные типы памяти создаются и сохраняются по-разному и в разных областях мозга. Исследователи все еще уточняют детали, но они знают, что автобиографические воспоминания — воспоминания о событиях, пережитых лично — начинают обретать устойчивую форму в части мозга, называемой гиппокампом, в часы и дни, следующие за событием. Нейроны общаются друг с другом через синапсы — соединения между этими клетками, которые включают крошечную щель, через которую могут быть отправлены химические мессенджеры. Таким образом, каждый нейрон может быть связан с тысячами других. Благодаря процессу, известному как синаптическая пластичность, нейроны постоянно производят новые белки для ремоделирования частей синапса, таких как рецепторы для этих химических веществ, что позволяет нейронам выборочно укреплять свои связи друг с другом. Это создает сеть клеток, которые вместе кодируют память. Чем чаще вспоминается воспоминание, тем сильнее становится его нейронная сеть. Со временем и благодаря постоянному воспоминанию память кодируется как в гиппокампе, так и в коре. В конце концов, он существует независимо в коре головного мозга, где его откладывают на длительное хранение.

Нейробиологи часто называют это физическое представление памяти инграммой. Они считают, что каждая инграмма имеет ряд синаптических связей, иногда даже в нескольких областях мозга, и что каждый нейрон и каждый синапс могут быть вовлечены в несколько инграмм.

Многое до сих пор неизвестно о том, как создаются воспоминания и как к ним обращаться, и решение таких загадок отняло у исследователей памяти много времени. Для сравнения, то, как мозг забывает, в значительной степени упускалось из виду. Это замечательная оплошность, говорит Майкл Андерсон, изучающий когнитивную неврологию в Кембриджском университете, Великобритания. «Каждый вид, у которого есть память, забывает. Полная остановка, без исключения. Неважно, насколько прост организм: если они могут усвоить уроки опыта, уроки могут быть потеряны», — говорит он. «В свете этого я нахожу совершенно ошеломляющим, что нейробиология рассматривает забывание как запоздалую мысль».

Это не было в центре внимания Рона Дэвиса, когда он обнаружил доказательства активного забывания у плодовых мушек ( Drosophila melanogaster ) в 2012 году. Дэвис, нейробиолог из Исследовательского института Скриппса в Юпитере, Флорида, изучал тонкости формирования памяти в грибовидных телах мух (густые сети нейронов в мозге насекомых, в которых хранятся обонятельные и другие сенсорные воспоминания). Его особенно интересовало понимание влияния нейронов, вырабатывающих дофамин, которые связаны с этими структурами. Дофамин, нейротрансмиттер, участвует в регуляции множества поведенческих реакций в мозгу мухи, и Дэвис предположил, что этот химический посредник может также играть роль в памяти.

Интересно, что Дэвис обнаружил, что дофамин необходим для забывания 1 . Он и его коллеги приучили трансгенных мух ассоциировать удары электрическим током с определенными запахами, тем самым приучив насекомых избегать их. Затем они активировали дофаминергические нейроны и заметили, что мухи быстро забыли ассоциацию. Тем не менее, блокирование одних и тех же нейронов сохраняло память. «Они регулировали способ выражения воспоминаний», — говорит Дэвис, по сути давая сигнал «забыть».

Дальнейшее исследование с использованием метода, позволившего исследователям отслеживать активность нейронов у живых мух, показало, что эти дофаминовые нейроны активны в течение длительного времени, по крайней мере, у мух. «Мозг всегда пытается забыть уже полученную информацию, — говорит Дэвис.

От мух к грызунам

Несколько лет спустя Хардт обнаружил нечто подобное у крыс. Он исследовал, что происходит в синапсах нейронов, которые участвуют в хранении долговременной памяти. Исследователи знают, что воспоминания кодируются в мозгу млекопитающих, когда увеличивается сила связи между нейронами. Сила этой связи определяется количеством рецепторов определенного типа, обнаруженных в синапсе. Наличие этих структур, известных как АМРА-рецепторы, необходимо поддерживать, чтобы память оставалась неповрежденной. «Проблема в том, — говорит Хардт, — что ни один из этих рецепторов не является стабильным. Они постоянно входят в синапс и выходят из него и меняются часами или днями».

Лаборатория Хардта показала, что специальный механизм постоянно способствует экспрессии AMPA-рецепторов в синапсах. Но некоторые воспоминания все еще забыты. Хардт предположил, что AMPA-рецепторы также могут быть удалены, что говорит о том, что забывание является активным процессом. Если бы это было правдой, то предотвращение удаления AMPA-рецепторов должно предотвратить забывание. Когда Хардт и его коллеги, как и ожидалось, заблокировали механизм удаления AMPA-рецепторов в гиппокампе крыс, они обнаружили, что крысам не удалось забыть местонахождение объектов 9. 0115 2 . Казалось, что для того, чтобы забыть некоторые вещи, крысиный мозг должен заранее разрушать связи в синапсе. Забывание, говорит Хардт, «это не отказ памяти, а ее функция».

В настоящее время известно, что нейромедиатор дофамин играет важную роль в памяти. Предоставлено: Alfred Pasieka/SPL

Пол Франкленд, нейробиолог из Детской больницы в Торонто, Канада, также нашел доказательства того, что мозг запрограммирован на забвение. Франкленд изучал образование новых нейронов, или нейрогенез, у взрослых мышей. Давно было известно, что этот процесс происходит в мозгу молодых животных, но был обнаружен в гиппокампе взрослых животных лишь примерно 20 лет назад. Поскольку гиппокамп участвует в формировании памяти, Франкленд и его команда задались вопросом, может ли усиление нейрогенеза у взрослых мышей помочь грызунам запоминать.

В статье, опубликованной в 2014 году, исследователи обнаружили прямо противоположное: вместо улучшения памяти животных усиление нейрогенеза заставило мышей больше забывать 3 . Каким бы противоречивым это изначально ни казалось Франкленду, учитывая предположение, что новые нейроны будут означать большую способность (и потенциально лучшую) память, он говорит, что теперь это имеет смысл. «Когда нейроны интегрируются в гиппокамп взрослого человека, они интегрируются в существующую, устоявшуюся схему. Если у вас есть информация, хранящаяся в этой цепи, и вы начнете ее переделывать, доступ к этой информации будет затруднен», — объясняет он.

Поскольку гиппокамп — это не место хранения долговременных воспоминаний в мозге, его динамическая природа — не недостаток, а особенность, говорит Франкленд, — то, что эволюционировало, чтобы помочь обучению. Окружающая среда постоянно меняется, и чтобы выжить, животные должны приспосабливаться к новым ситуациям. Позволить свежей информации перезаписать старую поможет им в этом.

Человеческая природа

Исследователи считают, что человеческий мозг может работать аналогичным образом. «Наша способность обобщать новый опыт частично связана с тем, что наш мозг участвует в контролируемом забывании», — говорит Блейк Ричардс, изучающий нейронные цепи и машинное обучение в Университете Торонто в Скарборо. Ричардс предполагает, что способность мозга забывать может предотвратить эффект, известный как переоснащение: в области искусственного интеллекта это определяется как когда математическая модель настолько хорошо сопоставляет данные, с которыми она была запрограммирована, что не может предсказать, какие данные могут быть следующими.

Аналогичным образом, если бы человек помнил каждую деталь такого события, как нападение собаки, то есть не только внезапное движение, которое напугало собаку в парке, заставившее ее рычать и кусаться, но также висячие уши собаки, цвет футболки ее владельца и угол наклона солнца — им может быть труднее обобщать опыт, чтобы предотвратить повторные укусы в будущем. «Если вы смоете несколько деталей, но сохраните суть, это поможет вам использовать ее в новых ситуациях», — говорит Ричардс. «Вполне возможно, что наш мозг немного контролирует забывание, чтобы не допустить переоснащения нашего опыта».

Исследования людей с исключительной автобиографической памятью или с ослабленной памятью подтверждают это. Люди с состоянием, известным как превосходная автобиографическая память (HSAM), помнят свою жизнь в таких невероятных подробностях, что могут описать одежду, которую они носили в любой конкретный день. Но, несмотря на их исключительную способность вспоминать такую ​​информацию, эти люди, как правило, не особенно совершенны и, по-видимому, имеют повышенную склонность к навязчивости, «именно это вы и ожидаете от кого-то, кто не может извлечь себя из конкретных случаев». — говорит Брайан Левин, когнитивный нейробиолог из Исследовательского института Ротмана в Baycrest Health Sciences в Торонто.

Тем не менее, люди с тяжелым дефицитом автобиографической памяти (SDAM) не могут ярко вспомнить определенные события своей жизни. В результате у них также возникают проблемы с представлением того, что может произойти в будущем. Тем не менее, по опыту Левина, люди с SDAM, как правило, особенно хорошо справляются с работой, требующей абстрактного мышления — вероятно, потому, что они не отягощены будничными вещами. «Мы думаем, что люди, использующие SDAM, благодаря своей практике отсутствия эпизодической памяти на протяжении всей жизни имеют возможность нарезать эпизоды», — говорит Левин. «Они умеют решать проблемы».

Интеграция новых нейронов (зеленые) в гиппокамп (красные полосы) ухудшает сохраненные воспоминания. Предоставлено: Джагруп Даливал

Исследования забывчивости у людей без HSAM или SDAM также начинают показывать, насколько важен этот процесс для здорового мозга. Команда Андерсона глубоко изучила, как у людей происходит активное забывание, используя комбинацию функциональной магнитно-резонансной томографии и магнитно-резонансной спектроскопии, чтобы изучить уровни тормозного нейромедиатора ГАМК (γ-аминомасляная кислота) в гиппокампе. Сканируя участников, которые пытались подавить определенные мысли, исследователи обнаружили, что чем выше у кого-то был уровень ГАМК, тем больше область мозга, называемая префронтальной корой, подавляла их гиппокамп, и тем лучше они забывали 9. 0115 4 . «Мы смогли связать успешное забывание с определенным нейротрансмиттером в мозгу», — говорит Андерсон.

Пытаясь забыть

Лучше понимая, как мы забываем, через призму как биологии, так и когнитивной психологии, Андерсон и другие исследователи могут приблизиться к совершенствованию методов лечения тревоги, посттравматического стрессового расстройства и даже болезни Альцгеймера.

Работа Андерсона по измерению уровня ГАМК в мозге может указывать на механизм, лежащий в основе эффективности бензодиазепинов — успокаивающих препаратов, таких как диазепам, которые назначают с 1960-е годы. Исследователям давно известно, что такие лекарства работают, усиливая функцию рецепторов ГАМК, тем самым помогая ослабить тревогу, но они не понимали, почему. Выводы Андерсона предлагают объяснение: если префронтальная кора приказывает гиппокампу подавлять мысль, гиппокамп не может ответить, если у него нет достаточного количества ГАМК. «Префронтальная кора является основной, посылая команды сверху для подавления активности в гиппокампе», — говорит Андерсон. «Если на земле нет войск, эти команды остаются без внимания».

Решающая роль ГАМК в подавлении нежелательных мыслей также влияет на фобии, шизофрению и депрессию. Различные симптомы этих состояний, в том числе воспоминания, навязчивые мысли, депрессивные размышления и трудности с контролем мыслей, связаны с гиперактивностью гиппокампа. «Мы думаем, что у нас есть ключевая механистическая структура, которая связывает воедино все эти различные симптомы и расстройства», — говорит Андерсон.

Исследование его группы также может иметь значение для лечения посттравматического стрессового расстройства, состояния, которое воспринимается как проблема слишком хорошего запоминания травматического эпизода, но в основе которого лежит проблема забывания. Лучшее понимание того, как помочь людям сделать травматические воспоминания менее навязчивыми, может помочь исследователям в лечении некоторых из самых трудноизлечимых случаев. Когда Андерсон и его коллеги изучили, что происходит, когда добровольцы подавляют нежелательные воспоминания — процесс, который он называет мотивированным забыванием, — они обнаружили, что люди, которые сообщали о более травматических переживаниях, особенно хорошо подавляли определенные воспоминания. 0115 5 . Понимание когнитивной психологии, лежащей в основе этой способности, а также умственной устойчивости, необходимой для ее развития, может помочь улучшить лечение посттравматического стрессового расстройства.

Хардт считает, что болезнь Альцгеймера также можно лучше понять как неисправность забывания, а не памяти. Он говорит, что если забывание действительно является хорошо регулируемой, врожденной частью процесса памяти, то имеет смысл, что нарушение регуляции этого процесса может иметь негативные последствия. «Что, если то, что на самом деле происходит, — это чрезмерно активный процесс забывания, который идет наперекосяк и стирает больше, чем нужно?» он спросил.

Еще из Nature Outlooks

На этот вопрос еще предстоит ответить. Но все больше исследователей памяти переключают свое внимание на изучение того, как мозг забывает, а также как он запоминает. «Растет понимание того, что забывание — это совокупность отдельных процессов, которые следует отличать от кодирования, консолидации и извлечения», — говорит Андерсон.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *