У человека костная ткань появляется на: как она устроена и как она работает

Содержание

как она устроена и как она работает

автор: PD Dr. med. Gesche Tallen, erstellt am: 2013/04/12, редактор: Dr. Natalie Kharina-Welke, Переводчик: Dr. Natalie Kharina-Welke, Последнее изменение: 2017/08/30

Тело любого человека опирается на скелет. Можно сказать, что скелет даёт нашему телу опору изнутри. А сам скелет состоит более чем из 200 костей. Разные кости отличаются друг от друга в зависимости от того, где именно в организме они находятся и какую работу они должны выполнять.

Работа, которую выполняют наши кости, разнообразна:

  • В любом движении нашего организма участвуют кости. Вместе с мышцами, суставами и связками они дают нам возможность передвигаться.
  • Кости защищают наши внутренние органы. Под защитой костей черепа, например, находится головной мозг, а рёбра защищают сердце и лёгкие.
  • Кроме того красный костный мозг‎ – это источник клеток крови, в нём вырастают лейкоциты, эритроциты и тромбоциты. То есть костный мозг – это то место, которое отвечает за наше кроветворение.
  • У костей есть ещё одна важная функция. Они накапливают кальций‎ и фосфор‎. И поэтому играют важную роль в обмене этих минеральных веществ организме человека.

Скелет взрослого человека более окостенелый. А у детей и подростков скелет состоит также из хрящевой ткани. Её количество зависит от возраста ребёнка. Большая часть взрослого костного скелета развилась из хрящей. Хрящи постепенно в процессе роста человека заменяются костями.

Замена хрящей на кости начинается уже во внутриутробном периоде развития ребёнка, то есть у эмбриона возрастом 6 недель. Этот процесс продолжается, пока человеку не исполнится 20 лет. Пока не произошло полное окостенение, клетки должны делиться много раз, чтобы наши кости росли в длину и в толщину. Поэтому на этом этапе появляется вероятность того, что может произойти какой-то сбой. Например, из клетки в клетку может передаться неправильная наследственная информация, или, наоборот, часть генетической информации может потеряться. В таком случае клетка‎ может злокачествеено измениться (то есть мутировать), и в результате появляется злокачественная опухоль кости, то есть рак кости.

Чтобы лучше понимать такую болезнь как остеосаркома, и почему её лечат именно так, как написано в протоколе, нужно иметь представление о том, что такое наши кости, из чего они состоят и как они работают. Именно для этого мы составили этот информационный блок. Он не претендует на абсолютную полноту. Но он достаточно просто объясняет основные знания современной медицины.

Из чего состоят кости

автор: Dr. med. Gesche Tallen, erstellt am: 2013/04/12, редактор: Dr. Natalie Kharina-Welke, Переводчик: Dr. Natalie Kharina-Welke, Последнее изменение: 2017/08/30

В первую очередь наши кости состоят из костного вещества, которое содержит соли кальция. В целом кость как орган состоит ещё из таких мягких тканей как суставные хрящи и надкостница (на языке специалистов периост), костного мозга внутри костей, а также кровеносных сосудов и нервов, которые проходят через надкостницу и костный мозг‎.

Костное вещество


Костное вещество составляет основную массу наших костей. Оно очень прочное, так как содержит кальций (специалисты говорят о солях кальция), его вес может доходить до 70% веса костей. Костное вещество бывает в костях в основном в двух формах: компактное костное вещество и губчатое костное вещество.

Компактное костное вещество – это твёрдая, плотная беловатая масса. В первую очередь она как бы окутывает (покрывает) толстым слоем костномозговые полости внутри длинных трубчатых костей (например, бедренных костей или плечевых костей). Зато губчатое костное вещество состоит из достаточно тонких пластинок/перекладинок. Его можно найти в наших коротких, плоских костях, например, в позвонках.

Костное вещество состоит из зрелых костных клеток, они называются остеоциты. У остеоцитов есть отростки и с помошью этих отростков они соединяются между собой. Работая вместе с молодыми клетками остеобластами, которые отвечают за формирование костей, начинает расти новая кость. А разрушается костная ткань с помощью клеток, которые называются остеокласты.

Суставные хрящи


Суставные хрящи есть практически во всех костях, за исключением костей черепа. Они покрывают суставные поверхности и являются последней оставшейся частью скелета из эмбрионального (зародышевого, эмбриональный‎) развития.

Надкостница


Надкостница (которую специалисты называют периостом) покрывает снаружи все наши кости. Поэтому нигде не видно самого костного вещества. Его покрывает либо надкостница, либо суставной хрящ.

Костный мозг


Костный мозг – это мягкая масса, которая находится в полостях внутри костей. Костный мозг бывает красным и жёлтым. Красный костный мозг отвечает в организме за кроветворение. А жёлтый костный мозг – это в основном жировая ткань.

Жёлтый костный мозг появляется у человека не сразу, а постепенно в ходе развития человека красный костный мозг заменяется на жёлтый. Поэтому чем старше становится человек, тем больше у него становится жёлтого костного мозга. У взрослых жёлтый костный мозг заполняет центральную часть длинных трубчатых костей (это могуть быть, например, плечевые кости), которую специалисты называют диафизом. Красный костный мозг находится в основном внутри коротких и плоских костей (например, внутри позвонков).

Кровеносные сосуды и нервы


Кровеносные сосуды и нервы находятся и в костном веществе, и в надкостнице, и в костном мозге. Они передают костным клеткам информацию, питательные вещества и кислород. Через мельчайшие отверстия на поверхности костей они попадают внутрь кости, а из кости выходят в систему кровообращения или соответственно в нервы, которые их соединяют с нервной системой.

Возрастная анатомия опорно-двигательного аппарата

Рис. 7. Развитие костей туловища.

Рис. 8. Развитие и аномалии развития позвонков.

Рис. 9. Расщелина дуг позвонков на протяжении всех грудных позвонков.

Кости туловища по развитию относятся к вторичным костям. Они окостеневают энхондрально (рис. 7).

Развитие позвонков:

У зародыша закладывается 38 позвонков: 7 шейных, 13 грудных, 5 поясничных, 12-13 крестцовых и копчиковых (рис. 8).

13-й грудной превращается в 1-й поясничный, последний поясничный – в 1-й крестцовый, Идет редукция большинства копчиковых позвонков.

Каждый позвонок имеет первоначально три ядра окостенения: в теле и по одному в каждой половинке дуги. Они срастаются лишь к третьему году жизни.

Вторичные центры появляются по верхнему и нижнему краям тела позвонка у девочек  в 6-8 лет, у мальчиков – в 7-9 лет. Они прирастают к телу позвонка в 20-25 лет.

Самостоятельные ядра окостенения образуются в отростках позвонков.

Аномалии развития позвонков (рис. 8, 9):

— Врожденные расщелины позвонков:

— Spina bifida  — расщелина только дуг.
— Рахишизис – полная расщелина (тело и дуга).

— Клиновидные позвонки и полупозвонки.

— Платиспондилия – расширение тела позвонка в поперечнике.

— Брахиспондилия – уменьшение тела позвонка по высоте, уплощение и укорочение.

— Аномалии суставных отростков: аномалии положения, аномалии величины, аномалии сочленения, отсутствие суставных отростков.

— Спондилолиз – дефект в межсуставной части дуги позвонка.

— Врожденные синостозы: полный и частичный.

— Os odontoideum – неслияние зуба с телом осевого позвонка.

— Ассимиляция (окципитализация) атланта – слияние атланта с затылочной костью.

— Шейные ребра.

— Сакрализация – полное или частичное слияние последнего поясничного позвонка с крестцом.

— Люмбализация – наличие шестого поясничного позвонка (за счет мобилизации первого крестцового).

Как меняется скелет современного человека: самые необычные факты

https://ria.ru/20200211/1564516096.html

Как меняется скелет современного человека: самые необычные факты

Как меняется скелет современного человека: самые необычные факты — РИА Новости, 11.02.2020

Как меняется скелет современного человека: самые необычные факты

Кости современных людей за последние тысячелетия стали менее плотными, выяснили ученые. Уменьшилась нижняя челюсть, что позволило произносить больше сложных… РИА Новости, 11.02.2020

2020-02-11T08:00

2020-02-11T08:00

2020-02-11T08:00

наука

сша

лондон

риа новости

казанский (приволжский) федеральный университет

открытия — риа наука

здоровье

потсдам

/html/head/meta[@name=’og:title’]/@content

/html/head/meta[@name=’og:description’]/@content

https://cdnn21.img.ria.ru/images/07e4/02/07/1564416581_0:0:1280:720_1920x0_80_0_0_6eefbf7ca1be522c8bc781f7c83e5ab3.jpg

МОСКВА, 11 фев — РИА Новости, Татьяна Пичугина. Кости современных людей за последние тысячелетия стали менее плотными, выяснили ученые. Уменьшилась нижняя челюсть, что позволило произносить больше сложных звуков. Зато относительно недавно человеческий скелет пополнился новой костью. Теперь у многих их 208, а не 207.Подпорка для коленаМиллионы лет назад, на заре становления человеческого вида, из колена исчезла за ненадобностью маленькая косточка — флабелла. В последнее время ее снова начали находить.Флабелла — одна из сесамовидных костей, располагающихся в сухожилиях. У животных она сформировалась примерно двести миллионов лет назад, чтобы придать прочности суставам, защитить сухожилие от повреждения при сильных нагрузках. Считается, что у человека эта кость повышает механическое сопротивление икроножной мышцы. Но зачем это нужно?Ученые из Имперского колледжа Лондона (Великобритания) проанализировали 66 научных работ начиная с 1875 года, содержащих сведения о флабелле. Выяснилось, что она встречается в 36,8 процента случаев чаще у азиатов, жителей Океании и Южной Америки, а если брать в расчет половой признак, то предпочтительнее у мужчин. В целом в 2018 году эта кость распространена в человеческой популяции в 3,5 раза чаще, чем век назад — в 1918-м.Рост флабеллы обусловлен генетически, но вот ее окостенение у всех происходит в разном возрасте и, возможно, зависит от механических причин. Чаще ее встречают у людей после 70 лет, но она может проявиться уже у 12-летних.Обычно флабелла появляется в обеих коленях и служит причиной осложнений после хирургических операций по замене суставов. В имплантате ее присутствие не учитывают, и это вызывает боль при ходьбе. В итоге «лишнюю» кость приходится удалять.Замечено также, что у людей с флабеллой нередко встречаются некоторые нейропатические заболевания, а риск остеоартрита колена увеличивается в два раза. Но что причина, а что следствие, пока неясно.Цена оседлостиСкелет современного человека более легкий по сравнению со скелетом предковых форм. Это выяснили ученые из Великобритании, США, Германии и Южной Африки. На этот счет существует специальный термин — «грацилизация». Он подразумевает уменьшение силы и массы костей по отношению к массе тела.О том, что современные люди более «грацильные», чем древние гоминиды, известно давно. Антропологи считали это результатом смены образа жизни, где физической активности стало гораздо меньше из-за автоматизации труда. Но насколько именно полегчали наши кости?Ученые проанализировали губчатую ткань костей верхних и нижних конечностей у нескольких вымерших гоминид, начиная с австралопитека, шимпанзе и современного человека. Им удалось показать увеличение грацильности от более древних к поздним представителям рода, но не плавное: кости неандертальцев и современных им разумных людей были почти такие же плотные, как кости древних homo.А вот нынешние люди отличаются меньшей плотностью костей даже по сравнению с прямыми предками, жившими во времена последнего оледенения 20 тысяч лет назад. Причем кости нижних конечностей подверглись грацилизации в большей степени. Это подкрепляет гипотезу авторов работы о том, что причина анатомических изменений — оседлый образ жизни. Расплата за стройную фигуру — остеопороз костей.Челюсть отвалиласьРаньше считалось, что разнообразие человеческих языков не связано с анатомией. Однако международный коллектив ученых, включая представителей Казанского федерального университета, доказал обратное. По их мнению, губно-зубные звуки «ф» и «в» появились в речи после неолитической революции, примерно шесть тысяч лет назад, благодаря тому, что нижняя челюсть уменьшилась.Возникновению человеческой речи предшествовала длительная эволюция скелета и тела, ряд ключевых усовершенствований, таких как опущенная гортань. Все это позволило изобрести тысячи звуков, которые вылились в тысячи существующих языков. Однако, как предположил американский лингвист Чарльз Хоккет, звуки «ф» и «в» тогда отсутствовали. Люди, жившие охотой и собирательством, постоянно пережевывающие сырую растительную пищу, не могли их произносить из-за слишком массивной нижней челюсти и прикуса «зубы к зубам».Расчеты показали, что губно-зубные звуки требуют на 30 процентов меньше мускульных усилий, если прикус позволяет верхней губе касаться нижних зубов. Ученые построили модель и выяснили, что шесть-восемь тысяч лет назад губно-зубные звуки встречались с вероятностью три процента среди примитивных индоевропейских языков, а среди современных — с вероятностью 76 процентов.Авторы работы полагают, что «инновационный» прикус начал распространяться в обществах, которые перешли на приготовление пищи.ПолегчалиВ статье 2010 года антрополог Кристина Шаффлер из Института биохимии и биологии Потсдамского университета (Германия) обратила внимание на то, что скелет современных детей становится менее прочным. Генетические причины исследовательница отвергла, так же как и недостаток питания. Остается одно объяснение — низкая физическая активность.Спустя несколько лет Шаффлер с коллегами повторила исследование, взяв для сравнения данные о больших группах школьников из Германии и России возрастом шесть-десять лет с 2000-го по 2010 год. Ученые проанализировали рост, индекс массы тела и высчитали внешнюю прочность скелета, исходя из соотношения ширины плечевой кости и роста.Они заметили, что индекс массы тела у немецких школьников продолжает повышаться последние два десятилетия, а прочность скелета — снижаться. У российских школьников, которые больше двигаются, чаще ходят пешком, больше занимаются спортом, эти параметры несколько лучше. Однако у мальчиков прочность костей имеет тенденцию к ухудшению.Ученые предполагают, что хрупкость скелета и уменьшение костей плеча — это адаптация к сидячему образу жизни и увеличению жировой ткани в теле.Бегом от стрессаЕще один интересный факт о скелете: оказывается, он играет важную роль во время стресса. Перед лицом опасности мозг дает команду реагировать: убегать или защищаться. При этом повышается температура тела, увеличивается расход энергии, учащается сердцебиение. Все это происходит с помощью различных гормонов.Как показали ученые из США и Индии, в этом процессе участвует и гормон остеокальцин, вырабатываемый костными клетками остеобластами. Специалисты проводили эксперименты на мышах, вызывая у них острый стресс в ответ на вынужденное заключение и удар током и замеряя уровень этого гормона. В среднем у подопытных животных в стрессе показатель вырос на 50 и 150 процентов соответственно. Авторы причислили его к гормонам фитнеса и высказали идею разработать на его основе лекарства от старения.

https://ria.ru/20190310/1551633228.html

сша

лондон

потсдам

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

2020

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

Новости

ru-RU

https://ria.ru/docs/about/copyright.html

https://xn--c1acbl2abdlkab1og.xn--p1ai/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

https://cdnn21.img.ria.ru/images/07e4/02/07/1564416581_161:0:1121:720_1920x0_80_0_0_445b6d0e5ba9921bac13126cec178c24.jpg

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

сша, лондон, риа новости, казанский (приволжский) федеральный университет, открытия — риа наука, здоровье, потсдам, биология, генетика

МОСКВА, 11 фев — РИА Новости, Татьяна Пичугина. Кости современных людей за последние тысячелетия стали менее плотными, выяснили ученые. Уменьшилась нижняя челюсть, что позволило произносить больше сложных звуков. Зато относительно недавно человеческий скелет пополнился новой костью. Теперь у многих их 208, а не 207.

Подпорка для колена

Миллионы лет назад, на заре становления человеческого вида, из колена исчезла за ненадобностью маленькая косточка — флабелла. В последнее время ее снова начали находить.

Флабелла — одна из сесамовидных костей, располагающихся в сухожилиях. У животных она сформировалась примерно двести миллионов лет назад, чтобы придать прочности суставам, защитить сухожилие от повреждения при сильных нагрузках. Считается, что у человека эта кость повышает механическое сопротивление икроножной мышцы. Но зачем это нужно?

Ученые из Имперского колледжа Лондона (Великобритания) проанализировали 66 научных работ начиная с 1875 года, содержащих сведения о флабелле. Выяснилось, что она встречается в 36,8 процента случаев чаще у азиатов, жителей Океании и Южной Америки, а если брать в расчет половой признак, то предпочтительнее у мужчин. В целом в 2018 году эта кость распространена в человеческой популяции в 3,5 раза чаще, чем век назад — в 1918-м.

Рост флабеллы обусловлен генетически, но вот ее окостенение у всех происходит в разном возрасте и, возможно, зависит от механических причин. Чаще ее встречают у людей после 70 лет, но она может проявиться уже у 12-летних.

Обычно флабелла появляется в обеих коленях и служит причиной осложнений после хирургических операций по замене суставов. В имплантате ее присутствие не учитывают, и это вызывает боль при ходьбе. В итоге «лишнюю» кость приходится удалять.

Замечено также, что у людей с флабеллой нередко встречаются некоторые нейропатические заболевания, а риск остеоартрита колена увеличивается в два раза. Но что причина, а что следствие, пока неясно.

Цена оседлости

Скелет современного человека более легкий по сравнению со скелетом предковых форм. Это выяснили ученые из Великобритании, США, Германии и Южной Африки. На этот счет существует специальный термин — «грацилизация». Он подразумевает уменьшение силы и массы костей по отношению к массе тела.

О том, что современные люди более «грацильные», чем древние гоминиды, известно давно. Антропологи считали это результатом смены образа жизни, где физической активности стало гораздо меньше из-за автоматизации труда. Но насколько именно полегчали наши кости?

Ученые проанализировали губчатую ткань костей верхних и нижних конечностей у нескольких вымерших гоминид, начиная с австралопитека, шимпанзе и современного человека. Им удалось показать увеличение грацильности от более древних к поздним представителям рода, но не плавное: кости неандертальцев и современных им разумных людей были почти такие же плотные, как кости древних homo.

А вот нынешние люди отличаются меньшей плотностью костей даже по сравнению с прямыми предками, жившими во времена последнего оледенения 20 тысяч лет назад. Причем кости нижних конечностей подверглись грацилизации в большей степени. Это подкрепляет гипотезу авторов работы о том, что причина анатомических изменений — оседлый образ жизни. Расплата за стройную фигуру — остеопороз костей.

Челюсть отвалилась

Раньше считалось, что разнообразие человеческих языков не связано с анатомией. Однако международный коллектив ученых, включая представителей Казанского федерального университета, доказал обратное. По их мнению, губно-зубные звуки «ф» и «в» появились в речи после неолитической революции, примерно шесть тысяч лет назад, благодаря тому, что нижняя челюсть уменьшилась.

Возникновению человеческой речи предшествовала длительная эволюция скелета и тела, ряд ключевых усовершенствований, таких как опущенная гортань. Все это позволило изобрести тысячи звуков, которые вылились в тысячи существующих языков. Однако, как предположил американский лингвист Чарльз Хоккет, звуки «ф» и «в» тогда отсутствовали. Люди, жившие охотой и собирательством, постоянно пережевывающие сырую растительную пищу, не могли их произносить из-за слишком массивной нижней челюсти и прикуса «зубы к зубам».

Расчеты показали, что губно-зубные звуки требуют на 30 процентов меньше мускульных усилий, если прикус позволяет верхней губе касаться нижних зубов. Ученые построили модель и выяснили, что шесть-восемь тысяч лет назад губно-зубные звуки встречались с вероятностью три процента среди примитивных индоевропейских языков, а среди современных — с вероятностью 76 процентов.

Авторы работы полагают, что «инновационный» прикус начал распространяться в обществах, которые перешли на приготовление пищи.

Полегчали

В статье 2010 года антрополог Кристина Шаффлер из Института биохимии и биологии Потсдамского университета (Германия) обратила внимание на то, что скелет современных детей становится менее прочным. Генетические причины исследовательница отвергла, так же как и недостаток питания. Остается одно объяснение — низкая физическая активность.

Спустя несколько лет Шаффлер с коллегами повторила исследование, взяв для сравнения данные о больших группах школьников из Германии и России возрастом шесть-десять лет с 2000-го по 2010 год. Ученые проанализировали рост, индекс массы тела и высчитали внешнюю прочность скелета, исходя из соотношения ширины плечевой кости и роста.

Они заметили, что индекс массы тела у немецких школьников продолжает повышаться последние два десятилетия, а прочность скелета — снижаться. У российских школьников, которые больше двигаются, чаще ходят пешком, больше занимаются спортом, эти параметры несколько лучше. Однако у мальчиков прочность костей имеет тенденцию к ухудшению.

Ученые предполагают, что хрупкость скелета и уменьшение костей плеча — это адаптация к сидячему образу жизни и увеличению жировой ткани в теле.

10 марта 2019, 08:00НаукаНапечатал, вставил, пошел. Создан прорывной метод лечения сложных переломов

Бегом от стресса

Еще один интересный факт о скелете: оказывается, он играет важную роль во время стресса. Перед лицом опасности мозг дает команду реагировать: убегать или защищаться. При этом повышается температура тела, увеличивается расход энергии, учащается сердцебиение. Все это происходит с помощью различных гормонов.

Как показали ученые из США и Индии, в этом процессе участвует и гормон остеокальцин, вырабатываемый костными клетками остеобластами. Специалисты проводили эксперименты на мышах, вызывая у них острый стресс в ответ на вынужденное заключение и удар током и замеряя уровень этого гормона. В среднем у подопытных животных в стрессе показатель вырос на 50 и 150 процентов соответственно. Авторы причислили его к гормонам фитнеса и высказали идею разработать на его основе лекарства от старения.

Почему у пожилых людей возникают переломы костей?

Почему у пожилых людей возникают переломы костей?

Остеопороз – это состояние, при котором снижается плотность костной ткани, кости становятся слишком тонкими и хрупкими, из-за чего возникает высокая степень риска переломов.

 

В течение жизни у человека костные клетки постоянно обновляются, но, если развивается остеопороз, старые костные клетки разрушаются быстрее, чем у новых появляется возможность заменить их. При остеопорозе кость теряет кальций и другие минералы. Все это делает кости более слабыми и подверженными переломам даже после незначительного удара или падения.

Очень часто человек узнает о том, что у него остеопороз, только когда происходит перелом.

Переломы из-за остеопороза часто встречаются в области бедра, запястья или позвоночника и могут приводить к инвалидности.

Данным заболеванием страдают пожилые люди в возрасте 60-70 лет, в том числе мужчины, а также у женщин с наступлением менопаузы.       Остеопороз в течение долгого времени остается незамеченным.

Признаки, по которым можно определить вероятность возникновения остеопороза:

  • уменьшение роста (более чем на 1 — 1,5 см), сутулость, искривление позвоночника;
  • частые, долго срастающиеся переломы костей;
  • боли в костях при изменении погоды;
  • хрупкие ногти и ломкие волосы, разрушение зубов;
  • ночные судороги в ногах.

Чтобы подтвердить остеопороз, следует пройти ультразвуковое или рентгенологическое обследование для определения плотности костной ткани и содержания кальция в кости.

Одной из важных мер в профилактике остеопороза является отказ от таких вредных привычек, как курение и злоупотребление алкоголем.

Физическая активность и достаточная нагрузка на все кости скелета — очень эффективный метод в предупреждении снижения плотности костной ткани. Очень полезно подниматься на свой этаж по лестнице, а не на лифте, выходить на одну-две остановки раньше и проходить оставшийся путь пешком.

Прогулки на свежем воздухе в дневное время в течение 10-15 минут позволяют организму получить достаточное количество витамина Д, необходимого организму для усвоения кальция и формирования крепких костей.

Рациональное и сбалансированное питание является необходимым фактором для нормального функционирования пищеварительной системы, полноценного обмена веществ и укрепления иммунитета. Основной же причиной остеопороза является нарушение обменных и гормональных процессов в организме.

При остеопорозе в рационе питания желательно присутствие продуктов, богатых кальцием.

Продукты, богатые содержанием кальция:

все сорта капусты

все виды орехов

цельно зерновые продукты из всех видов злаковых и бобовых культур

кисломолочные продукты (натуральные)

все сухофрукты, особенно курага и чернослив

различная зелень, в особенности шпинат

свежие овощи и фрукты, без исключения

Лечение остеопороза также предполагает прием медикаментов и выполнение специального комплекса упражнений. Все это позволит остановить развитие разрушительного заболевания.

Мы не можем остановить время, но мы можем остановить остеопороз!

Остеопороз

Название этой болезни произошло от двух греческих слов: osteon — кость и poros — отверстие. Таким образом, остеопороз — особое заболевание, поражающее костную ткань, при котором в ней образуются пустоты-поры.

От этого кости нашего скелета становятся чрезвычайно хрупкими и могут сломаться даже при небольших нагрузках.Предположим, споткнулся человек на ровном месте, неудачно открыл тяжелую дверь или уронил на ногу увесистую книгу. Казалось бы, мелочь. А для больного с остеопорозом дело может закончиться переломом. По статистике, на сегодняшний день остеопороз является самым распространенным заболеванием костной ткани, причем у женщин он встречается в два раза чаще, чем у мужчин.

Причины
Остеопороз никогда не появляется просто так, сам по себе. Обычно он возникает в результате каких-нибудь нарушений в работе организма. В частности, к уменьшению количества костной ткани могут привести сбои в обмене веществ. К факторам риска относятся: переломы и травмы, наследственные нарушения обмена кальция, возраст, длительный стаж курения, алкоголизм, проблемы с пищеварением, изменение гормонального фона, большое количество беременностей ,малоподвижный образ жизни.

Чаще всего остеопороз развивается у женщин в период климакса, а возникает болезнь потому, что снижается выработка половых гормонов. Как известно, половые гормоны напрямую влияют на состояние костного обмена веществ, и при их недостатке идет разрежение костной ткани (за счет вымывания кальция).

Еще одна причина остеопороза — прием некоторых лекарственных препаратов. Например, синтетические кортикостероиды по своей структуре очень похожи на гормоны надпочечников, и также принимают участие в костном обмене. При длительном применении стероидных лекарств в организме происходит гормональная перестройка, и в итоге страдает костная ткань.

У пожилых людей нередко наблюдается, так называемый старческий остеопороз. Тут главную роль играют не гормоны, а ухудшение всасывания кальция в кишечнике и низкая активность клеток,«строящих»кость.
Что_происходит_при_остеопорозе ? При остеопорозе имеющаяся костная ткань разрушается гораздо быстрее, чем образуется новая. В итоге общая масса костного скелета уменьшается, кости становятся более хрупкими. Для болезни характерна деформация позвонков и нарастающая боль в спине при движении, частые переломы крупных и мелких костей. Больные даже становятся меньше ростом, иногда они «стаптываются» на 10-15 см.

Чем_проявляется?
На первых порах остеопороз никак себя не проявляет. Около десяти лет может пройти с начала болезни, а человек все еще будет находиться в неведении о происходящих в его организме изменениях. Уменьшение костной массы не сопровождается болью, разве что иногда начинает ныть низ спины. Как правило, первым признаком остеопороза становится перелом какой-либо кости (на рентгеновском снимке по поводу перелома замечают признаки остеопороза).

Диагноз
На сам остеопороз больные обычно не жалуются — они обращаются за помощью, когда случается перелом ,когда появляются боли в позвоночнике, суставах. Если возраст пациента старше 50 лет, а переломы случаются у него подозрительно часто, врач может предположить, что причина тому — неполадки с костной тканью.

Чтобы не ошибиться с диагнозом, врач назначают пациенту рентген костей. Может понадобиться денситометрическое исследование или компьютерная томография. Кроме того, будет проведен анализ крови на содержание кальция и проверка гормонального фона. При необходимости больного направят на дополнительную консультацию к ревматологу,эндокринологу, а если пациентка — женщина, то на прием к гинекологу.

Лечение
Больным с эндокринными нарушениями назначают препараты, нормализующие гормональный фон, препараты регулирующие строение костной ткани, назначают препараты кальция и витамин Д3. Также больным назначают массаж и лечебную физкультуру, при необходимости советуют носить поддерживающие корсеты. Важная роль отводится лечебной физкультуре. ПРИМЕРЫ УПРАЖНЕНИЙ ДЛЯ ГИМНАСТИКИ ПРИ ОСТЕОПОРОЗЕ В ДОМАШНИХ УСЛОВИЯХ

Согнуть голеностопные суставы, вытянуть колени, напрячь ягодицы, прижать ладони к полу, вытянуть спину;

Слегка согнуть колени, согнуть голеностопные суставы, прижать пятки и запястья к полу, напрячь мышцы живота;

Поставить стопы на пол, вытянуть спину, прижать ладони плотно к полу, напрячь ягодицы и живот;

Поднять вертикально левую ногу, прижать правую руку к передней поверхности бедра, держа правую ногу прижатой к полу;

Прижать пятки к полу, слегка поднять и вытянуть руки, поднять голову, напрячь мышцы живота;

Напрячь ягодицы, прижать ладони и предплечья к полу, приподнять бедра, образовав дугу;

Притянуть колени к грудной клетке, плотно прижать и обхватить руками;

Сесть как можно прямее, вытянуть ноги, поддер­живать тело руками, напрячь ягодицы и живот;

Встать на четвереньки, поднять голову, выгнуть спину, затем согнуть спину, включая в движение голову;

Встать на четвереньки, поднять голову, выгнуть спину, затем согнуть спину, включая в движение голову;

Встать на четвереньки, напрячь мышцы живота, вытянуть левую руку вперед, левую ногу назад, отталкиваясь от пола как можно сильнее, затем поменять стороны.

Примеры упражнений при остеопорозе:

  • Одна нога согнута в колене, другая отведена назад, руки на поясе. Полуприсед как можно ниже 4 раза. Поменять положение ног.
  • Локти согнуты, руки на уровне плеч, разводить руки и плечи назад, сводя лопатки.
  • Стоя, руки перед собой в замке. Поднять руки перед собой вверх, прогнуться, отставляя ногу назад на носок. Руки опустить через стороны вниз. «Велосипед» двумя ногами.
  • «Горизонтальные ножницы» (скрещивание выпрямленных ног).
  • Лежа на спине, ноги согнуты в коленях, приподнять таз, удержать положение 5-7 сек (держать живот втянутым), принять исходное положение.
  • Лежа на боку, отводить прямую правую ногу под углом 30-450, удерживая 5 – 7 сек. Повторить на другом боку.
  • Лежа на левом боку, правая нога отведена назад, переместить ее вперед, описывая полукруг, затем переместить назад (также через описания полукруга). Повторить на другом боку.
  • Попеременно поднимать то левую, то правую прямую ногу, удерживая 5 – 7 сек.
  • Лежа на животе (руки вдоль туловища) отрывать плечевой пояс от пола, удерживая 5- 7 сек.
  • Поднимание головы, плечевого пояса и обеих выпрямленных ног, руки поднимаются вперед (лодочка) или разводятся в стороны (ласточка).
  • Стоя на четвереньках, поднимать попеременно противоположные ногу и руку, удерживать 5-7 сек. Повторить, поменяв положение руки и ноги.
  • Руки в опоре сзади. Приподнять таз как можно выше, удержать 5-7 сек. Опустить.

Профилактика.
Первой линией защиты от остеопороза является увеличение поступления кальция в организм. Лучшими источниками кальция являются молоко и молочные продукты (различные сыры и творог), зеленые овощи (петрушка, листовой салат, лук), бобовые, орехи, рыба, цитрусовые.

Кроме того, исследователи обнаружили, что женщины, которые занимаются физическими упражнениями, имеют большую плотность кости, чем те, кто ими не занимается.

Для уменьшения риска падений , умения «сгруппироваться» в нужный момент, рекомендуется выполнять координаторную гимнастику ,особенно важно для пожилых людей.

Координаторная гимнастика

И.п. — стоя (лицом к зеркалу)

  1. Руки вперед: сжимание — разжимание кистей рук поочередно.
  2. И.п. — то же: одновременно.
  3. Поочередное поднятие носков (пятка на полу).
  4. То же — одновременно.
  5. Руки вперед: сжать кисть и противоположный носок на себя.
  6. То же — одновременно.
  7. Поднимание поочередно плеч.
  8. Руки на поясе: перекаты на внешнюю сторону стоп.
  9. Наклон в сторону, рукой тянемся к колену.
  10. Правую руку в сторону, левую вперед, и.п. И наоборот.
  11. Руки за голову: касание разноименной пяткой колена.
  12. Руки на пояс: касание разноименным носком подколенной ямки.
  13. То же с закрытыми глазами.
  14. “Носок — пятка”.
  15. Одновременно носки — пятки (стопы вместе).
  16. Поднимаем руку вверх и отводим разноименную ногу назад.

И.п. — в ходьбе

  1. Руки за голову: на носках.
  2. Руки на пояс: на пятках.
  3. Перекаты с пятки на носок.
  4. Руки к плечам: касаемся локтем колена.
  5. Хлопки под коленом на каждый шаг.
  6. Скрестный шаг левым, правым боком
  7. Спиной вперед.
  8. Руки вперед: сжимание кисти на каждый шаг.
  9. Руки внизу в замке: поочередное приведение рук к плечу на каждый шаг.
  10. “Ласточка” на каждый шаг.
  11. Приставляем пятку к носку.
  12. Переступание прямой линии.
  13. Захлест голени, рукой коснуться противоположной пятки

И.п. — стоя

  1. Мах ногой вперед — в сторону — назад — и.п.
  2. То же с закрытыми глазами.
  3. Мах ногой вперед — назад, руки — “движение лыжника”.
  4. Выпад ногой в сторону, противоположная рука в сторону.
  5. Выпад ногой вперед, противоположная рука вверх.

Врач Хвесковец Е.М.

Перелом кости, остеосинтез, сращение перелома

Мы с детства знаем, что переломы заживают самостоятельно, стоит только зафиксировать поврежденную часть тела на некоторое время. Как же протекает процесс сращения перелома?

Воссоединение фрагментов кости заключается в трёх этапах:

1.  Образование гематомы. Протекает до 2 недель.

В кости присутствуют сосуды, которые рвутся во время перелома. Кровь из них вытекает, сворачивается и образует гематому. Это и является ключевым фактором запуска процесса заживления.

На данном этапе важно зафиксировать фрагменты кости пострадашего. В «простых» случаях это делается с помощью внешнего ортеза – гипсовых, полимерных повязок и фиксаторов.

Если фрагменты кости невозможно закрепить в правильном положении без непосредственного доступа к месту перелома, то проводится операция остеосинтеза. Это «сборка» кости или сустава с помощью фиксирующих конструкций, устанавливаемых непосредственно на поврежденную кость и ее фрагменты.

2. Мягкая мозоль. Протекает до 6 недель.

Гематома создаёт подходящую среду для созревания мягкой костной мозоли. Она строится из нитей соединительной ткани и новых мельчайших сосудов.

3.  Твердая мозоль и успешное восстановление кости. Протекает до 12 недель

Постепенно мягкая мозоль наполняется основными строительными клетками костной ткани – остеобластами. Плотность и твердость соединительной ткани увеличивается, ее нити сплетаются туже.


Когда перелом не срастается

К сожалению, бывают переломы, которые не срастаются без дополнительной медицинской помощи. По статистике количество таких травм достигает 10%.


В группу риска попадают люди старше 55 лет, страдающие сахарным диабетом, принимающие нестероидные противовоспалительные препараты. И, конечно, обладатели различных дегенеративных и дистрофических заболеваний костной системы (остеопороза, артритов, артроза и т.д.)

Прямыми причинами того, что кость не срастается, могут быть нарушения в процессе регенерации костной ткани – недостаточное образование отека и гематомы, слабый рост новых сосудов, не созревает соединительная ткань.

В зависимости от этих причин подбирается адекватное лечение. Однако, первым этапом становится остеосинтез. С помощью хирургического вмешательства задается правильное и более плотное расположение фрагментов, при необходимости дополнительная костная ткань берется из здоровой кости.

Клиника «Линия жизни» специализируется на лечении сложных переломов хирургическим способом.


Структура костной ткани | SEER Training

Есть два типа костной ткани: плотная и губчатая. Названия подразумевают, что эти два типа различаются по плотности или по тому, насколько плотно ткань упакована вместе. Есть три типа клеток, которые способствуют гомеостазу костей. Остеобласты представляют собой костеобразующие клетки, остеокласты резорбируют или разрушают кость, а остеоциты — зрелые костные клетки. Равновесие между остеобластами и остеокластами поддерживает костную ткань.

Компактная кость

Компактная кость состоит из плотно расположенных остеонов или гаверсовых систем. Остеон состоит из центрального канала, называемого остеоническим (гаверсовым) каналом, который окружен концентрическими кольцами (ламелями) матрикса. Между кольцами матрикса костные клетки (остеоциты) расположены в пространствах, называемых лакунами. Небольшие каналы (canaliculi) исходят от лакун к остеоническому (гаверсовскому) каналу, обеспечивая проходы через твердый матрикс. В компактной кости гаверсовы системы плотно упакованы вместе, образуя то, что кажется твердой массой.Остеонические каналы содержат кровеносные сосуды, параллельные длинной оси кости. Эти кровеносные сосуды соединяются посредством перфорирующих каналов с сосудами на поверхности кости.

Губчатая (губчатая) кость

Губчатая (губчатая) кость легче и менее плотна, чем компактная кость. Губчатая кость состоит из пластинок (трабекул) и костных стержней, прилегающих к небольшим полостям неправильной формы, которые содержат красный костный мозг. Канальцы соединяются с соседними полостями, а не с центральным гаверсовым каналом, чтобы получать кровоснабжение.Может показаться, что трабекулы расположены случайным образом, но они организованы таким образом, чтобы обеспечивать максимальную прочность, как скобы, которые используются для поддержки здания. Трабекулы губчатой ​​кости следуют по линиям напряжения и могут перестроиться, если направление напряжения изменится.

Структура, функции и факторы, влияющие на костные клетки

Костная ткань непрерывно реконструируется за счет согласованных действий костных клеток, которые включают резорбцию кости остеокластами и формирование кости остеобластами, тогда как остеоциты действуют как механосенсоры и организаторы процесса ремоделирования кости .Этот процесс находится под контролем местных (например, факторы роста и цитокины) и системных (например, кальцитонин и эстрогены) факторов, которые все вместе способствуют гомеостазу костей. Дисбаланс между резорбцией и формированием кости может привести к заболеваниям костей, включая остеопороз. Недавно было обнаружено, что во время ремоделирования кости между костными клетками существует сложная связь. Например, связь резорбции кости с образованием кости достигается за счет взаимодействия между остеокластами и остеобластами.Более того, остеоциты продуцируют факторы, которые влияют на активность остеобластов и остеокластов, тогда как апоптоз остеоцитов сопровождается резорбцией остеокластов кости. Растущие знания о структуре и функциях костных клеток способствовали лучшему пониманию биологии костей. Было высказано предположение, что существует сложная связь между костными клетками и другими органами, что указывает на динамический характер костной ткани. В этом обзоре мы обсуждаем текущие данные о структуре и функциях костных клеток и факторах, влияющих на ремоделирование кости.

1. Введение

Кость — это минерализованная соединительная ткань, в которой представлены четыре типа клеток: остеобласты, клетки выстилки кости, остеоциты и остеокласты [1, 2]. Кость выполняет важные функции в организме, такие как движение, поддержка и защита мягких тканей, хранение кальция и фосфата и укрытие костного мозга [3, 4]. Несмотря на свой инертный вид, кость представляет собой очень динамичный орган, который постоянно резорбируется остеокластами и вновь формируется остеобластами. Есть данные, что остеоциты действуют как механосенсоры и организаторы этого процесса ремоделирования кости [5-8].Функция клеток выстилки кости не совсем ясна, но эти клетки, по-видимому, играют важную роль в соединении резорбции кости с формированием кости [9].

Ремоделирование кости — это очень сложный процесс, при котором старая кость заменяется новой, в цикле, состоящем из трех фаз: (1) инициирование резорбции кости остеокластами, (2) переход (или период обращения) от резорбции к образование новой кости и (3) образование кости остеобластами [10, 11]. Этот процесс происходит из-за скоординированных действий остеокластов, остеобластов, остеоцитов и клеток выстилки кости, которые вместе образуют временную анатомическую структуру, называемую базовой многоклеточной единицей (BMU) [12–14].

Нормальное ремоделирование кости необходимо для заживления переломов и адаптации скелета к механическому использованию, а также для гомеостаза кальция [15]. С другой стороны, дисбаланс резорбции и образования кости приводит к нескольким заболеваниям костей. Например, чрезмерная резорбция остеокластами без соответствующего количества нервно-сформированной кости остеобластами способствует потере костной массы и остеопорозу [16], тогда как наоборот может привести к остеопетрозу [17]. Таким образом, равновесие между образованием и резорбцией кости необходимо и зависит от действия нескольких местных и системных факторов, включая гормоны, цитокины, хемокины и биомеханическую стимуляцию [18–20].

Недавние исследования показали, что кость влияет на деятельность других органов, а на кость также влияют другие органы и системы тела [21], что дает новые представления и свидетельствует о сложности и динамической природе костной ткани.

В этом обзоре мы обратимся к текущим данным о биологии костных клеток, костном матриксе и факторах, влияющих на процесс ремоделирования кости. Кроме того, мы кратко обсудим роль эстрогена в костной ткани в физиологических и патологических условиях.

2. Костные клетки
2.1. Остеобласты

Остеобласты представляют собой кубовидные клетки, расположенные вдоль поверхности кости, составляющие 4–6% от общего количества резидентных костных клеток, и широко известны своей функцией формирования кости [22]. Эти клетки демонстрируют морфологические характеристики клеток, синтезирующих белок, включая обильный грубый эндоплазматический ретикулум и выдающийся аппарат Гольджи, а также различные секреторные везикулы [22, 23]. Как поляризованные клетки, остеобласты секретируют остеоид в направлении костного матрикса [24] (Рисунки 1 (a), 1 (b) и 2 (a)).

Остеобласты происходят из мезенхимальных стволовых клеток (МСК). Обязательство MSC по отношению к клону остеопрогениторов требует экспрессии специфических генов после своевременных запрограммированных шагов, включая синтез костных морфогенетических белков (BMPs) и членов путей Wingless (Wnt) [25]. Экспрессия связанных с Runt факторов транскрипции 2, Distal-less homeobox 5 (Dlx5) и osterix (Osx) является критическим для дифференцировки остеобластов [22, 26]. Кроме того, Runx2 является главным геном дифференцировки остеобластов, о чем свидетельствует тот факт, что Runx2-нулевые мыши лишены остеобластов [26, 27]. Runx2 продемонстрировал активную регуляцию генов, связанных с остеобластами, таких как ColIA1 , ALP , BSP , BGLAP и OCN [28].

Когда во время дифференцировки остеобластов образуется пул предшественников остеобластов, экспрессирующих Runx2 и ColIA1 , наступает фаза пролиферации. На этой фазе предшественники остеобластов проявляют активность щелочной фосфатазы (ЩФ) и считаются преостеобластами [22].Переход преостеобластов в зрелые остеобласты характеризуется увеличением экспрессии Osx и секреции белков костного матрикса, таких как остеокальцин (OCN), костный сиалопротеин (BSP) I / II и коллаген I типа. претерпевают морфологические изменения, становясь крупными и кубовидными клетками [26, 29–31].

Имеются доказательства, что др. Факторы, такие как фактор роста фибробластов (FGF), микроРНК и коннексин 43, играют важную роль в дифференцировке остеобластов [32–35].Мыши с нокаутом FGF-2 показали снижение костной массы, связанное с увеличением адипоцитов в костном мозге, что указывает на участие FGF в дифференцировке остеобластов [34]. Также было продемонстрировано, что FGF-18 активирует дифференцировку остеобластов по аутокринному механизму [36]. МикроРНК участвуют в регуляции экспрессии генов во многих типах клеток, включая остеобласты, в которых одни микроРНК стимулируют, а другие ингибируют дифференцировку остеобластов [37, 38]. Коннексин 43, как известно, является основным коннексином в кости [35].Мутация в гене, кодирующем коннексин 43, нарушает дифференцировку остеобластов и вызывает пороки развития скелета у мышей [39].

Синтез костного матрикса остеобластами происходит в два основных этапа: отложение органического матрикса и его последующая минерализация (Рисунки 1 (b) –1 (d)). На первом этапе остеобласты секретируют белки коллагена, в основном коллаген I типа, неколлагеновые белки (OCN, остеонектин, BSP II и остеопонтин) и протеогликан, включая декорин и бигликан, которые образуют органический матрикс.После этого минерализация костного матрикса проходит в две фазы: везикулярную и фибриллярную фазы [40, 41]. Везикулярная фаза возникает, когда части с переменным диаметром в диапазоне от 30 до 200 нм, называемые везикулами матрикса, высвобождаются из домена апикальной мембраны остеобластов во вновь образованный костный матрикс, в котором они связываются с протеогликанами и другими органическими компонентами. Из-за своего отрицательного заряда сульфатированные протеогликаны иммобилизуют ионы кальция, которые хранятся в везикулах матрикса [41, 42].Когда остеобласты секретируют ферменты, разрушающие протеогликаны, ионы кальция высвобождаются из протеогликанов и пересекают кальциевые каналы, представленные в мембране матричных везикул. Эти каналы образованы белками, называемыми аннексинами [40].

С другой стороны, фосфатсодержащие соединения расщепляются ALP, секретируемой остеобластами, высвобождая ионы фосфата внутри везикул матрикса. Затем ионы фосфата и кальция внутри пузырьков зарождаются, образуя кристаллы гидроксиапатита [43].Фибриллярная фаза возникает, когда пересыщение ионов кальция и фосфата внутри везикул матрицы приводит к разрыву этих структур и кристаллы гидроксиапатита распространяются на окружающую матрицу [44, 45].

Зрелые остеобласты выглядят как единственный слой кубовидных клеток, содержащих обильный грубый эндоплазматический ретикулум и большой комплекс Гольджи (Рисунки 2 (а) и 3 (а)). Некоторые из этих остеобластов демонстрируют цитоплазматические отростки в направлении костного матрикса и достигают отростков остеоцитов [46].На этой стадии зрелые остеобласты могут подвергнуться апоптозу или стать остеоцитами или клетками выстилки кости [47, 48]. Интересно, что внутри вакуолей остеобластов наблюдались круглые / яйцевидные структуры, содержащие плотные тела и TUNEL-положительные структуры. Эти данные предполагают, что помимо профессиональных фагоцитов, остеобласты также способны поглощать и разрушать апоптотические тела во время формирования альвеолярной кости [49].

2.2. Клетки выстилки костей

Клетки выстилки костей представляют собой покоящиеся остеобласты плоской формы, которые покрывают костные поверхности, где не происходит ни резорбции кости, ни образования кости [50].Эти клетки имеют тонкий и плоский профиль ядра; его цитоплазма простирается вдоль поверхности кости и отображает несколько цитоплазматических органелл, таких как профили шероховатого эндоплазматического ретикулума и аппарата Гольджи [50] (Рисунок 2 (b)). Некоторые из этих клеток обнаруживают отростки, простирающиеся в канальцы, а также наблюдаются щелевые соединения между соседними клетками выстилки кости и между этими клетками и остеоцитами [50, 51].

Секреторная активность клеток выстилки костей зависит от физиологического статуса костей, в результате чего эти клетки могут повторно приобретать свою секреторную активность, увеличивая свой размер и принимая кубовидную форму [52].Функции клеток выстилки костной ткани до конца не изучены, но было показано, что эти клетки предотвращают прямое взаимодействие между остеокластами и костным матриксом, когда резорбция кости не должна происходить, а также участвуют в дифференцировке остеокластов, продуцируя остеопротегерин (OPG) и активатор рецептора. лиганда ядерного фактора каппа-B (RANKL) [14, 53]. Более того, клетки выстилки кости вместе с другими костными клетками являются важным компонентом BMU, анатомической структуры, которая присутствует во время цикла ремоделирования кости [9].

2.3. Остеоциты

Остеоциты, которые составляют 90–95% всех костных клеток, являются наиболее многочисленными и долгоживущими клетками, продолжительность жизни которых составляет до 25 лет [54]. В отличие от остеобластов и остеокластов, которые были определены их соответствующими функциями во время образования кости и резорбции кости, остеоциты ранее определялись по их морфологии и расположению. На протяжении десятилетий трудности с выделением остеоцитов из костного матрикса приводили к ошибочному представлению о том, что эти клетки будут пассивными клетками, а их функции неправильно интерпретировались [55].Разработка новых технологий, таких как идентификация специфичных для остеоцитов маркеров, новые модели на животных, разработка методов выделения и культивирования костных клеток, а также создание фенотипически стабильных клеточных линий, привели к улучшению понимания биологии остеоцитов. Фактически, было признано, что эти клетки выполняют множество важных функций в кости [8].

Остеоциты расположены в лакунах, окруженных минерализованным костным матриксом, при этом они имеют дендритную морфологию [15, 55, 56] (Рисунки 3 (a) –3 (d)).Морфология внедренных остеоцитов различается в зависимости от типа кости. Например, остеоциты губчатой ​​кости более округлые, чем остеоциты кортикальной кости, которые имеют удлиненную морфологию [57].

Остеоциты происходят от линии МСК посредством дифференцировки остеобластов. В этом процессе были предложены четыре распознаваемых стадии: остеоид-остеоцит, преостеоцит, молодой остеоцит и зрелый остеоцит [54]. В конце цикла формирования кости субпопуляция остеобластов становится остеоцитами, включенными в костный матрикс.Этот процесс сопровождается заметными морфологическими и ультраструктурными изменениями, включая уменьшение размеров круглых остеобластов. Количество органелл, таких как шероховатый эндоплазматический ретикулум и аппарат Гольджи, уменьшается, а соотношение ядра и цитоплазмы увеличивается, что соответствует снижению синтеза и секреции белка [58].

Во время перехода остеобласт / остеоцит цитоплазматический процесс начинает проявляться до того, как остеоциты встраиваются в костный матрикс [22].Механизмы, участвующие в развитии цитоплазматических процессов остеоцитов, до конца не изучены. Однако белок E11 / gp38, также называемый подопланином, может играть важную роль. E11 / gp38 высоко экспрессируется во встроенных или недавно встроенных остеоцитах, подобно другим типам клеток с дендритной морфологией, таким как подоциты, альвеолярные клетки легких типа II и клетки сосудистого сплетения [59]. Было высказано предположение, что E11 / gp38 использует энергию активности GTPase для взаимодействия с компонентами цитоскелета и молекулами, участвующими в подвижности клеток, посредством чего регулирует динамику актинового цитоскелета [60, 61].Соответственно, ингибирование экспрессии E11 / gp38 в остеоцитоподобных клетках MLO-Y4, как было показано, блокирует удлинение дендритов, подтверждая, что E11 / gp38 участвует в образовании дендритов в остеоцитах [59].

По завершении стадии зрелого остеоцита, полностью заключенного в минерализованный костный матрикс, происходит подавление экспрессии некоторых ранее экспрессированных маркеров остеобластов, таких как OCN, BSPII, коллаген типа I и ЩФ. С другой стороны, маркеры остеоцитов, включая белок 1 дентинового матрикса (DMP1) и склеростин, высоко экспрессируются [8, 62–64].

В то время как тело клетки остеоцита расположено внутри лакуны, его цитоплазматические отростки (до 50 на каждую клетку) пересекают крошечные туннели, берущие начало в пространстве лакуны, называемые канальцами, образуя лакуно-канальцевую систему остеоцитов [65] (Рисунки 3 (b)) –3 (г)). Эти цитоплазматические процессы связаны с другими процессами соседних остеоцитов щелевыми соединениями, а также с цитоплазматическими процессами остеобластов и выстилающих костную ткань клеток на поверхности кости, облегчая межклеточный транспорт малых сигнальных молекул, таких как простагландины и оксид азота, между этими клетками [66 ].Кроме того, лакуно-каналическая система остеоцитов находится в непосредственной близости от сосудов, через которые кислород и питательные вещества попадают в остеоциты [15].

Было подсчитано, что поверхность остеоцитов в 400 раз больше, чем у всех систем Гаверса и Фолькмана, и более чем в 100 раз больше, чем поверхность губчатой ​​кости [67, 68]. Связь между клетками также обеспечивается интерстициальной жидкостью, которая течет между отростками остеоцитов и канальцами [68]. С помощью лакуно-канальцевой системы (Рис. 3 (b)) остеоциты действуют как механосенсоры, поскольку их взаимосвязанная сеть обладает способностью обнаруживать механическое давление и нагрузки, тем самым помогая адаптации кости к ежедневным механическим силам [55].Таким образом, остеоциты, по-видимому, действуют как организаторы ремоделирования кости, регулируя активность остеобластов и остеокластов [15, 69]. Более того, апоптоз остеоцитов был признан хемотаксическим сигналом к ​​резорбции костной ткани остеокластами [70–73]. В соответствии с этим было показано, что во время резорбции кости апоптотические остеоциты поглощаются остеокластами [74–76].

Механическая чувствительность остеоцитов достигается благодаря стратегическому расположению этих клеток в костном матриксе.Таким образом, форма и пространственное расположение остеоцитов согласуются с их функциями восприятия и передачи сигналов, способствуя преобразованию механических стимулов в биохимические сигналы, явление, которое называется пьезоэлектрическим эффектом [77]. Механизмы и компоненты, с помощью которых остеоциты преобразуют механические стимулы в биохимические сигналы, не очень хорошо известны. Однако было предложено два механизма. Один из них заключается в том, что существует белковый комплекс, образованный ресничками и ассоциированными с ней белками PolyCystins 1 и 2, который, как полагают, является критическим для механочувствительности остеоцитов и для опосредованного остеобластами / остеоцитами образования кости [78].Второй механизм включает компоненты цитоскелета остеоцитов, включая белковый комплекс фокальной адгезии и его множественные актин-ассоциированные белки, такие как паксиллин, винкулин, талин и зиксин [79]. При механической стимуляции остеоциты производят несколько вторичных мессенджеров, например, АТФ, оксид азота (NO), Ca 2+ и простагландины (PGE 2 и PGI 2 ), которые влияют на физиологию костей [8, 80] . Независимо от задействованного механизма, важно отметить, что механочувствительная функция остеоцитов возможна благодаря сложной канальцевой сети, которая обеспечивает связь между костными клетками.

2.4. Остеокласты

Остеокласты представляют собой терминально дифференцированные многоядерные клетки (Рисунки 4 (a) –4 (d)), которые происходят из мононуклеарных клеток линии гемопоэтических стволовых клеток под влиянием нескольких факторов. В число этих факторов входят макрофагальный колониестимулирующий фактор (M-CSF), секретируемый мезенхимальными клетками и остеобластами остеопрогениторов [81], и лиганд RANK, секретируемый остеобластами, остеоцитами и стромальными клетками [20]. Вместе эти факторы способствуют активации факторов транскрипции [81, 82] и экспрессии генов в остеокластах [83, 84].

M-CSF связывается со своим рецептором (cFMS), присутствующим в предшественниках остеокластов, что стимулирует их пролиферацию и ингибирует их апоптоз [82, 85]. RANKL является решающим фактором остеокластогенеза и экспрессируется остеобластами, остеоцитами и стромальными клетками. Когда он связывается со своим рецептором RANK в предшественниках остеокластов, индуцируется образование остеокластов [86]. С другой стороны, другой фактор, называемый остеопротегерином (OPG), который продуцируется широким спектром клеток, включая остеобласты, стромальные клетки, фибробласты десен и пародонта [87–89], связывается с RANKL, предотвращая взаимодействие RANK / RANKL и , следовательно, ингибирование остеокластогенеза [87] (Рисунок 5).Таким образом, система RANKL / RANK / OPG является ключевым медиатором остеокластогенеза [19, 86, 89].


Взаимодействие RANKL / RANK также способствует экспрессии других остеокластогенных факторов, таких как NFATc1 и DC-STAMP. Взаимодействуя с факторами транскрипции PU.1, cFos и MITF, NFATc1 регулирует гены, специфичные для остеокластов, включая TRAP и катепсин K , которые имеют решающее значение для активности остеокластов [90]. Под влиянием взаимодействия RANKL / RANK, NFATc1 также индуцирует экспрессию DC-STAMP, которая имеет решающее значение для слияния предшественников остеокластов [91, 92].

Несмотря на то, что эти остеокластогенные факторы были хорошо определены, недавно было продемонстрировано, что остеокластогенный потенциал может различаться в зависимости от рассматриваемого участка кости. Сообщалось, что остеокласты из длинного костного мозга формируются быстрее, чем в челюсти. Эта другая динамика остеокластогенеза, возможно, может быть связана с клеточным составом костного мозга, специфичным для костной ткани [93].

Во время ремоделирования кости остеокласты поляризуются; затем можно наблюдать четыре типа мембранных доменов остеокластов: зону уплотнения и волнистую границу, которые находятся в контакте с костным матриксом (рис. 4 (b) и 4 (d)), а также базолатеральный и функциональный секреторные домены, которые не контактируют с костным матриксом [94, 95].Поляризация остеокластов во время резорбции кости включает перестройку актинового цитоскелета, в которой образуется кольцо F-актина, которое включает плотную непрерывную зону высокодинамичных подосом, и, следовательно, область мембраны, которая развивается в взъерошенную границу, изолирована. Важно отметить, что эти домены образуются только тогда, когда остеокласты находятся в контакте с внеклеточным минерализованным матриксом, в процессе, в котором -интегрин, а также CD44, опосредуют прикрепление подосом остеокластов к поверхности кости [96–99] .Ультраструктурно волнистая граница представляет собой мембранный домен, образованный микроворсинками, который изолирован от окружающей ткани прозрачной зоной, также известной как зона уплотнения. Светлая зона — это область, лишенная органелл, расположенная на периферии остеокласта рядом с костным матриксом [98]. Эта запечатывающая зона образована актиновым кольцом и несколькими другими белками, включая актин, талин, винкулин, паксиллин, тензин и связанные с актином белки, такие как α -актинин, фимбрин, гельсолин и динамин [95].-Интегрин связывается с неколлагеновым костным матриксом, содержащим -RGD-последовательность, такую ​​как костный сиалопротеин, остеопонтин и витронектин, создавая периферическое уплотнение, ограничивающее центральную область, где расположена взъерошенная граница [98] (рисунки 4 (b) -4 ( г)).

Поддержание взъерошенной границы также важно для активности остеокластов; эта структура формируется за счет интенсивного движения лизосомальных и эндосомных компонентов. На волнистой кайме находится H + -АТФаза вакуолярного типа (V-АТФаза), которая помогает подкислять лакуну резорбции и, следовательно, способствует растворению кристаллов гидроксиапатита [20, 100, 101].В этой области протоны и ферменты, такие как тартрат-устойчивая кислая фосфатаза (TRAP), катепсин K и матриксная металлопротеиназа-9 (MMP-9), транспортируются в отсек, называемый лакуной Howship, что приводит к деградации кости [94, 101–104 ] (Рисунок 5). Продукты этой деградации затем подвергаются эндоцитозу через взъерошенную границу и трансцитируются в функциональный секреторный домен на плазматической мембране [7, 95].

Аномальное увеличение образования и активности остеокластов приводит к некоторым заболеваниям костей, таким как остеопороз, когда резорбция превышает образование, вызывая снижение плотности костей и увеличение числа переломов костей [105].При некоторых патологических состояниях, включая метастазы в кости и воспалительный артрит, аномальная активация остеокластов приводит к околосуставным эрозиям и болезненным остеолитическим повреждениям соответственно [83, 105, 106]. При пародонтите заболевание пародонта, вызванное размножением бактерий [107, 108], вызывает миграцию воспалительных клеток. Эти клетки продуцируют химические медиаторы, такие как IL-6 и RANKL, которые стимулируют миграцию остеокластов [89, 109, 110]. В результате в альвеолярной кости происходит ненормальное усиление резорбции костной ткани, что способствует потере прикрепления зубов и прогрессированию пародонтита [89, 111].

С другой стороны, при остеопетрозе, который является редким заболеванием костей, генетические мутации, влияющие на функции образования и резорбции остеокластов, приводят к снижению резорбции кости, что приводит к непропорциональному накоплению костной массы [17]. Эти заболевания демонстрируют важность нормального процесса ремоделирования кости для поддержания гомеостаза кости.

Кроме того, есть свидетельства того, что остеокласты выполняют несколько других функций. Например, было показано, что остеокласты продуцируют факторы, называемые кластокинами, которые контролируют остеобласты во время цикла ремоделирования кости, который будет обсуждаться ниже.Другие недавние данные свидетельствуют о том, что остеокласты также могут напрямую регулировать нишу гемопоэтических стволовых клеток [112]. Эти данные указывают на то, что остеокласты являются не только клетками, резорбирующими кости, но также источником цитокинов, влияющих на активность других клеток.

2,5. Внеклеточный костный матрикс

Кость состоит из неорганических солей и органического матрикса [113]. Органический матрикс содержит коллагеновые белки (90%), преимущественно коллаген I типа и неколлагеновые белки, включая остеокальцин, остеонектин, остеопонтин, фибронектин и костный сиалопротеин II, костные морфогенетические белки (BMP) и факторы роста [114].Существуют также небольшие протеогликаны, богатые лейцином, включая декорин, бигликан, люмикан, остеоадерин и сериновые белки [114–116].

Неорганический костный материал состоит преимущественно из ионов фосфата и кальция; однако также присутствуют значительные количества бикарбоната, натрия, калия, цитрата, магния, карбоната, флюорита, цинка, бария и стронция [1, 2]. Ионы кальция и фосфата образуют зародыши с образованием кристаллов гидроксиапатита, которые представлены химической формулой Ca 10 (PO 4 ) 6 (OH) 2 .Вместе с коллагеном неколлагеновые матричные белки образуют каркас для отложения гидроксиапатита, и такая ассоциация отвечает за типичную жесткость и сопротивление костной ткани [4].

Костный матрикс представляет собой сложный и организованный каркас, который обеспечивает механическую поддержку и играет важную роль в гомеостазе кости. Костный матрикс может высвобождать несколько молекул, которые мешают активности костных клеток и, следовательно, участвует в ремоделировании кости [117].Поскольку одной только потери костной массы недостаточно, чтобы вызвать переломы костей [118], предполагается, что другие факторы, включая изменения белков костного матрикса и их модификации, имеют решающее значение для понимания и прогнозирования переломов костей [119]. Фактически, известно, что коллаген играет решающую роль в структуре и функции костной ткани [120].

Соответственно, было продемонстрировано, что существует вариация в концентрации белков костного матрикса с возрастом, питанием, заболеванием и лечением антиостеопоротическими средствами [119, 121, 122], что может способствовать деформации после растяжения и переломам кости [119] .Например, исследования in vivo, и in vitro, показали, что увеличение синтеза гиалуроновой кислоты после лечения паратироидным гормоном (ПТГ) было связано с последующей резорбцией кости [123–127], что указывает на возможную связь между синтезом гиалуроновой кислоты и повышение активности остеокластов.

2.6. Взаимодействие между костными клетками и костным матриксом

Как обсуждалось ранее, костный матрикс не только обеспечивает поддержку костных клеток, но также играет ключевую роль в регулировании активности костных клеток посредством нескольких молекул адгезии [117, 128].Интегрины являются наиболее распространенными молекулами адгезии, участвующими во взаимодействии между костными клетками и костным матриксом [129]. Остеобласты взаимодействуют с костным матриксом с помощью интегринов, которые распознают и связываются с RGD и другими последовательностями, присутствующими в белках костного матрикса, включая остеопонтин, фибронектин, коллаген, остеопонтин и костный сиалопротеин [130, 131]. Наиболее частыми интегринами, присутствующими в остеобластах, являются, и [132]. Эти белки также играют важную роль в организации остеобластов на поверхности кости во время синтеза остеоидов [129].

С другой стороны, взаимодействие между остеокластами и костным матриксом важно для функции остеокластов, поскольку, как упоминалось ранее, резорбция кости происходит только тогда, когда остеокласты связываются с минерализованной поверхностью кости [97]. Таким образом, во время резорбции кости остеокласты экспрессируют интегрины и взаимодействуют с внеклеточным матриксом, в котором первые связываются с обогащенными костями RGD-содержащими белками, такими как костный сиалопротеин и остеопонтин, тогда как интегрины связываются с фибриллами коллагена [133, 134].Несмотря на эти связывания, остеокласты обладают высокой подвижностью, даже при активной резорбции, и, как мигрирующие клетки, остеокласты не экспрессируют кадгерины. Однако было продемонстрировано, что кадгерины обеспечивают тесный контакт между предшественниками остеокластов и стромальными клетками, которые экспрессируют важные факторы роста для дифференцировки остеокластов [135].

Интегрины играют посредническую роль во взаимодействиях остеоцитов с костным матриксом. Эти взаимодействия важны для механочувствительной функции этих клеток, посредством чего сигналы, индуцированные деформацией ткани, генерируются и усиливаются [136].До сих пор неясно, какие интегрины участвуют, но было высказано предположение, что интегрины и интегрины участвуют во взаимодействии остеоцитов с костным матриксом [137, 138]. Эти взаимодействия происходят между телом остеоцитов и костным матриксом стенки лакуны, а также между стенкой канальца с отростками остеоцитов [137].

Только узкое перицеллюлярное пространство, заполненное жидкостью, отделяет тело клетки остеоцита и отростки от минерализованного костного матрикса [58]. Расстояние между телом клетки остеоцита и лакунарной стенкой составляет примерно 0.5–1,0 мкм м шириной, тогда как расстояние между мембранами отростков остеоцитов и стенкой канальца колеблется от 50 до 100 нм [139]. Химический состав перицеллюлярной жидкости точно не определен. Однако присутствует разнообразный набор макромолекул, продуцируемых остеоцитами, таких как остеопонтин, остеокальцин, белок матрикса дентина, протеогликаны и гиалуроновая кислота [136, 140, 141].

Остеоциты и их отростки окружены неорганизованным перицеллюлярным матриксом; внутри канальцевой сети наблюдались тонкие фиброзные связи, названные «тросами» [139].Было высказано предположение, что одним из возможных соединений этих связок является перлекан [141]. Отростки остеоцитов также могут прикрепляться непосредственно к «бугоркам», которые представляют собой выступающие структуры, исходящие из стенок канальцев. Эти структуры образуют тесные контакты, возможно, посредством -интегринов, с мембраной отростков остеоцитов [137, 142]. Таким образом, эти структуры, по-видимому, играют ключевую роль в механочувствительной функции остеоцитов, воспринимая движения потока жидкости вместе с перицеллюлярным пространством, вызванные силами механической нагрузки [143].Кроме того, движение потока жидкости также важно для двунаправленного транспорта растворенных веществ в перицеллюлярном пространстве, что влияет на сигнальные пути остеоцитов и связь между костными клетками [144, 145].

2.7. Местные и системные факторы, регулирующие гомеостаз кости

Ремоделирование кости — это очень сложный цикл, который достигается согласованными действиями остеобластов, остеоцитов, остеокластов и клеток выстилки кости [3]. Формирование, пролиферация, дифференцировка и активность этих клеток контролируются местными и системными факторами [18, 19].К местным факторам относятся аутокринные и паракринные молекулы, такие как факторы роста, цитокины и простагландины, продуцируемые костными клетками, помимо факторов костного матрикса, которые высвобождаются во время резорбции кости [46, 146]. Системные факторы, которые важны для поддержания гомеостаза костей, включают паратироидный гормон (ПТГ), кальцитонин, 1,25-дигидроксивитамин D 3 (кальцитриол), глюкокортикоиды, андрогены и эстрогены [16, 147–150]. Сообщалось, что, как и PTH, родственный PTH белок (PTHrP), который также связывается с рецептором PTH, влияет на ремоделирование кости [147].

Эстроген играет решающую роль в гомеостазе костной ткани; снижение уровня эстрогенов в период менопаузы является основной причиной потери костной массы и остеопороза [16]. Механизмы действия эстрогена на костную ткань до конца не изучены. Тем не менее, несколько исследований показали, что эстроген поддерживает гомеостаз костей, ингибируя апоптоз остеобластов и остеоцитов [151–153] и предотвращая чрезмерную резорбцию кости. Эстроген подавляет образование и активность остеокластов, а также вызывает апоптоз остеокластов [16, 76, 104, 154].Было высказано предположение, что эстроген снижает образование остеокластов за счет ингибирования синтеза остеокластогенного цитокина RANKL остеобластами и остеоцитами. Более того, эстроген стимулирует эти костные клетки продуцировать остеопротегерин (OPG), рецептор-ловушку RANK в остеокласте, тем самым подавляя остеокластогенез [19, 155–159]. Кроме того, эстроген подавляет образование остеокластов за счет снижения уровней других остеокластогенных цитокинов, таких как IL-1, IL-6, IL-11, TNF- α , TNF- β и M-CSF [160, 161] .

Эстроген действует непосредственно на костные клетки посредством своих рецепторов эстрогена α и β , присутствующих на этих клетках [162]. Более того, было показано, что остеокласты являются прямой мишенью для эстрогена [163, 164]. Соответственно, иммуноэкспрессия рецептора эстрогена β была продемонстрирована в клетках альвеолярной кости самок крыс, получавших эстрадиол. Более того, усиленная иммуноэкспрессия, наблюдаемая в TUNEL-положительных остеокластах, указывает на то, что эстроген участвует в контроле продолжительности жизни остеокластов непосредственно с помощью рецепторов эстрогена [163].Эти данные демонстрируют важность эстрогена для поддержания гомеостаза костей.

2,8. Процесс ремоделирования кости

Цикл ремоделирования кости происходит в костных полостях, которые необходимо реконструировать [165]. В этих полостях образуются временные анатомические структуры, называемые базовыми многоклеточными единицами (BMU), которые состоят из группы остеокластов впереди, образующих режущий конус, и группы остеобластов позади, образующих замыкающий конус, связанных с кровеносными сосудами и кровеносными сосудами. периферическая иннервация [11, 166].Было высказано предположение, что BMU покрыт покровом клеток (возможно, выстилающими костями клетками), которые формируют компартмент ремоделирования кости (BRC) [13]. BRC, по-видимому, связан с клетками выстилки кости на поверхности кости, которые, в свою очередь, сообщаются с остеоцитами, заключенными в костном матриксе [13, 14].

Цикл ремоделирования кости начинается с фазы инициации, которая состоит из резорбции кости остеокластами, за которой следует фаза образования кости остеобластами, но между этими двумя фазами существует переходная (или обратная) фаза.Цикл завершается скоординированными действиями остеоцитов и клеток выстилки кости [10, 11]. В фазе инициации под действием остеокластогенных факторов, включая RANKL и M-CSF, гемопоэтические стволовые клетки рекрутируются в определенные участки поверхности кости и дифференцируются в зрелые остеокласты, которые инициируют резорбцию кости [167, 168].

Известно, что во время цикла ремоделирования кости существуют прямые и непрямые связи между костными клетками в процессе, называемом механизмом сцепления, который включает растворимые факторы сцепления, хранящиеся в костном матриксе, которые будут высвобождаться после резорбции кости остеокластами [169].Например, такие факторы, как инсулиноподобные факторы роста (IGF), трансформирующий фактор роста β (TGF- β ), BMP, FGF и фактор роста тромбоцитов (PDGF), по-видимому, действуют как факторы связывания, поскольку они хранятся в костном матриксе и высвобождаются во время резорбции кости [170]. Эта идея подтверждается генетическими исследованиями на людях и мышах, а также фармакологическими исследованиями [105, 171].

Недавно было высказано предположение, что другая категория молекул, называемых семафоринами, участвует в коммуникации костных клеток во время ремоделирования кости [146].На начальном этапе необходимо подавить дифференцировку и активность остеобластов, чтобы полностью удалить поврежденную или старую кость. Остеокласты экспрессируют фактор, называемый семафорин4D (Sema4D), который ингибирует образование кости во время резорбции кости [172]. Семафорины включают большое семейство гликопротеинов, которые не только связаны с мембраной, но также существуют в виде растворимых форм, которые обнаруживаются в широком диапазоне тканей и, как было показано, участвуют в различных биологических процессах, таких как иммунный ответ, органогенез, развитие сердечно-сосудистой системы и опухоли. прогрессия [172, 173].В костях было высказано предположение, что семафорины также участвуют в межклеточной коммуникации между остеокластами и остеобластами во время цикла ремоделирования кости [174–176].

Sema4D, экспрессируемый в остеокластах, связывается со своим рецептором (Plexin-B1), присутствующим в остеобластах, и ингибирует путь IGF-1, необходимый для дифференцировки остеобластов [172], что указывает на то, что остеокласты подавляют образование костей, экспрессируя Sema4D. Напротив, другой член семейства семафоринов (Sema3A) был обнаружен в остеобластах и ​​считается ингибитором остеокластогенеза [177].Таким образом, во время цикла ремоделирования кости остеокласты ингибируют образование кости, экспрессируя Sema4D, чтобы инициировать резорбцию кости, тогда как остеобласты экспрессируют Sema3A, который подавляет резорбцию кости, до образования кости [146] (Рис. 5).

Недавние исследования также предполагают существование других факторов, участвующих в механизме сцепления во время цикла ремоделирования кости. Одним из этих факторов является ephrinB2, мембраносвязанная молекула, экспрессируемая в зрелых остеокластах, которая связывается с ephrinB4, обнаруженным в плазматической мембране остеобластов.Связывание ephrinB2 / ephrinB4 передает двунаправленные сигналы, которые способствуют дифференцировке остеобластов, тогда как обратная передача сигналов (ephrinB4 / ephrinB2) ингибирует остеокластогенез [178] (Рисунок 5). Эти находки предполагают, что путь ephrinB2 / ephrinB4 может быть вовлечен в прекращение резорбции кости и индуцирует дифференцировку остеобластов в переходной фазе [178].

Кроме того, было показано, что эфринB2 также экспрессируется в остеобластах [179]. Более того, зрелые остеокласты секретируют ряд факторов, которые стимулируют дифференцировку остеобластов, таких как секретируемые сигнальные молекулы Wnt10b, BMP6 и сигнальный сфинголипид, сфингозин-1-фосфат [180].Эти находки указывают на очень сложный механизм эфринов и участие других факторов в коммуникации остеокластов / остеобластов во время цикла ремоделирования кости. С другой стороны, несмотря на исследования, в которых сообщается об участии семафоринов и эфринов в коммуникации остеокластов / остеобластов, прямой контакт между зрелыми остеобластами и остеокластами не был продемонстрирован in vivo и все еще остается спорным.

Помимо остеокластов и остеобластов, было продемонстрировано, что остеоциты играют ключевую роль во время цикла ремоделирования кости [8].Фактически, под влиянием нескольких факторов остеоциты действуют как организаторы процесса ремоделирования кости, производя факторы, которые влияют на активность остеобластов и остеокластов [55] (Рисунок 5). Например, механическая нагрузка стимулирует остеоциты продуцировать факторы, которые оказывают анаболическое действие на кость, такие как PGE 2 , простациклин (PGI 2 ), NO и IGF-1 [181–184]. С другой стороны, механическая разгрузка подавляет анаболические факторы и стимулирует остеоциты продуцировать склеростин и DKK-1, которые являются ингибиторами активности остеобластов [185–188], а также специфических факторов, стимулирующих местный остеокластогенез [189].Склеростин является продуктом гена SOST и, как известно, является негативным регулятором образования кости, подавляя в остеобластах действие Lrp5, ключевого рецептора сигнального пути Wnt / β -катенин [63].

Апоптоз остеоцитов, как было показано, действует как хемотаксический сигнал для локального рекрутирования остеокластов [70, 150, 152, 190, 191]. Соответственно, сообщалось, что остеокласты поглощают апоптотические остеоциты [74, 75, 192], предполагая, что остеокласты способны удалять умирающие остеоциты и / или остеобласты из участка ремоделирования (Рисунки 4 (c) и 4 (d)).Более того, сообщается, что остеокластогенные факторы также продуцируются жизнеспособными остеоцитами рядом с умирающими остеоцитами [193]. Имеются данные о том, что остеоциты действуют как основной источник RANKL, способствуя остеокластогенезу [167, 168], хотя было продемонстрировано, что этот фактор также продуцируется другими типами клеток, такими как стромальные клетки [194], остеобласты и фибробласты [88, 89].

Таким образом, все еще остается неясным, какие именно факторы, стимулирующие остеокластогенез, продуцируются остеоцитами.Недавние обзоры были сосредоточены на некоторых молекулах, которые могут быть кандидатами на передачу сигналов между апоптозом остеоцитов и остеокластогенезом [72, 73]. Например, в костях, подвергнутых усталостной нагрузке, жизнеспособные остеоциты, расположенные рядом с апоптозными, экспрессируют, помимо высокого отношения RANKL / OPG, повышенные уровни фактора роста эндотелия сосудов (VEGF) и хемоаттрактантного протеина-1 моноцитов (CCL2), способствуя усилению местного остеокластогенеза. [194, 195]. Было высказано предположение, что остеоциты действуют как основной источник RANKL, способствуя остеокластогенезу [166, 167].Кроме того, увеличение соотношения RANKL / OPG, экспрессируемого остеоцитами, также наблюдалось у крыс с дефицитом коннексина 43, что позволяет предположить, что нарушение межклеточной коммуникации между остеоцитами может индуцировать высвобождение местных проостеокластогенных цитокинов [33, 196, 197] . Бокс-белок 1 группы с высокой подвижностью (HMGB1) [198–200] и M-CSF [201], как предполагается, также продуцируются остеоцитами, которые стимулируют рекрутирование остеокластов во время ремоделирования кости [72, 73]. Таким образом, для решения этой проблемы необходимы дальнейшие исследования.

2.9. Эндокринные функции костной ткани

Классические функции костной ткани, помимо передвижения, включают поддержку и защиту мягких тканей, хранение кальция и фосфатов и укрытие костного мозга. Кроме того, недавние исследования были сосредоточены на эндокринных функциях костей, которые могут влиять на другие органы [202]. Например, было показано, что остеокальцин, продуцируемый остеобластами, действует на другие органы [203]. Остеокальцин можно найти в двух различных формах: карбоксилированном и недкарбоксилированном.Карбоксилированная форма имеет высокое сродство к кристаллам гидроксиапатита, оставаясь в костном матриксе во время его минерализации. Андеркарбоксилированная форма проявляет более низкое сродство к минералам из-за подкисления костного матрикса во время резорбции остеокластов кости, а затем она транспортируется кровотоком, достигая других органов [204, 205]. Было показано, что недокарбоксилированный остеокальцин оказывает некоторое действие на поджелудочную железу, жировую ткань, яички и нервную систему. В поджелудочной железе остеокальцин действует как положительный регулятор секреции и чувствительности инсулина поджелудочной железы, а также пролиферации β -клеток поджелудочной железы [110].В жировой ткани остеокальцин стимулирует экспрессию гена адипонектина, что, в свою очередь, увеличивает чувствительность к инсулину [204]. В яичках остеокальцин может связываться со специфическим рецептором в клетках Лейдига и усиливать синтез тестостерона и, следовательно, увеличивать фертильность [206]. Остеокальцин также стимулирует синтез моноаминовых нейромедиаторов в гиппокампе и ингибирует синтез гамма-аминомасляной кислоты (ГАМК), улучшая обучаемость и навыки памяти [207].

Остеоциты обеспечивают еще одну эндокринную функцию костной ткани.Эти клетки способны регулировать метаболизм фосфатов за счет производства FGF23, который действует на другие органы, включая паращитовидную железу и почки, снижая уровень циркулирующих фосфатов [208, 209]. Остеоциты также действуют на иммунную систему, изменяя микроокружение в первичных лимфоидных органах и тем самым влияя на лимфопоэз [210]. Известно, что активность не только остеоцитов, но также остеобластов и остеокластов влияет на иммунную систему, в основном при воспалительном разрушении костей.Действительно, открытие коммуникативного взаимодействия между скелетной и иммунной системами привело к появлению новой области исследований, называемой остеоиммунологией [211].

3. Выводы

Знание структурной, молекулярной и функциональной биологии кости имеет важное значение для лучшего понимания этой ткани как многоклеточной единицы и динамической структуры, которая также может действовать как эндокринная ткань, функция все еще плохо понял. In vitro и in vivo Исследования продемонстрировали, что костные клетки реагируют на различные факторы и молекулы, что способствует лучшему пониманию пластичности костных клеток.Кроме того, взаимодействия костного матрикса, зависимые от костных клеток, необходимы для образования и резорбции костной ткани. Исследования обращали внимание на важность лакуноканаликулярной системы и перицеллюлярной жидкости, с помощью которой остеоциты действуют как механосенсоры, для адаптации кости к механическим силам. Гормоны, цитокины и факторы, регулирующие активность костных клеток, такие как склеростин, эфринB2 и семафоринг, играют значительную роль в гистофизиологии кости в нормальных и патологических условиях.Таким образом, такое более глубокое понимание динамической природы костной ткани, безусловно, поможет управлять новыми терапевтическими подходами к заболеваниям костей.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов в отношении публикации данной статьи.

Благодарности

Это исследование было поддержано Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP-2010 / 10391-9; 2012 / 19428-8 и 2012 / 22666-8), Conselho Nacional de Desenvolvimento Científicógico e Tecnífico (CNPq) и Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Бразилия.

Костей — канал лучшего здоровья

Кости обеспечивают структуру нашего тела. Скелет взрослого человека состоит из 206 костей. К ним относятся кости черепа, позвоночник (позвонки), ребра, руки и ноги. Кости состоят из соединительной ткани, усиленной кальцием и специализированными костными клетками. Большинство костей также содержат костный мозг, в котором образуются клетки крови.

Кости работают с мышцами и суставами, чтобы удерживать наше тело вместе и поддерживать свободу движений. Это называется опорно-двигательной системой.Скелет поддерживает и формирует тело и защищает хрупкие внутренние органы, такие как мозг, сердце и легкие.

Кости содержат большую часть кальция, поступающего в наш организм. Организм постоянно наращивает и разрушает костную ткань по мере необходимости. Для здоровья костей необходимо сбалансированное питание, регулярные упражнения с весовой нагрузкой и правильный уровень различных гормонов.

Скелет

Человеческий скелет состоит из 206 костей, включая кости:

  • Череп — включая кость челюсти
  • Позвоночник — шейный, грудной и поясничный позвонки, крестец и копчик (копчик)
  • Грудь — ребра и грудина (грудина)
  • Руки — лопатка (лопатка), ключица (ключица), плечевая кость, лучевая и локтевая кости
  • Руки — кости запястья (запястные кости), пястные кости и фаланги
  • Таз — бедренные кости
  • Ноги — бедренная кость (бедренная кость), коленная чашечка (надколенник), большеберцовая кость (большеберцовая кость) и малоберцовая кость
  • Ступни — предплюсны, плюсны и фаланги.

Типы костей

В человеческом теле есть четыре различных типа костей:

  • Длинная кость — имеет длинную и тонкую форму. Примеры включают кости рук и ног (исключая запястья, лодыжки и коленные чашечки). С помощью мышц длинные кости работают как рычаги, позволяющие двигаться.
  • Кость короткая — приземистая, кубовидная. Примеры включают кости, составляющие запястья и лодыжки.
  • Плоская кость — имеет плоскую широкую поверхность.Примеры включают ребра, лопатки, грудину и кости черепа.
  • Кость неправильной формы — имеет форму, которая не соответствует трем вышеупомянутым типам. Примеры включают кости позвоночника (позвонки).

Костная ткань

К различным слоям костной ткани относятся:

  • Надкостница — плотная жесткая внешняя оболочка, которая содержит кровеносные сосуды и нервы
  • Компактная или плотная ткань — твердый гладкий слой, который защищает ткань в пределах
  • Губчатая или губчатая ткань — пористый сотовый материал, находящийся внутри большинства костей, который позволяет кости быть прочной, но легкой
  • Костный мозг — желеобразное вещество, находящееся внутри полостей некоторых костей (включая таз), который производит клетки крови.

Костный мозг

Костный мозг — это место, где образуются клетки крови. К трем различным типам клеток крови, производимым костным мозгом, относятся:

  • Красные кровяные тельца — переносят кислород по всему телу.
  • Белые кровяные тельца — составляют иммунную систему организма.
  • Тромбоциты — используются для свертывания крови.

Костные клетки

Наше тело постоянно реконструирует свой скелет, наращивая и разрушая костную ткань по мере необходимости.В результате примерно каждые десять лет каждая кость восстанавливается с нуля. Костные клетки, участвующие в этом процессе, включают:

  • Остеобласты — клетки, которые строят костную ткань
  • Остеоциты — клетки, которые поддерживают костную ткань, контролируя содержание минералов и кальция
  • Остеокласты — клетки, которые разрушить старую костную ткань.

Плотность костей

Многие факторы работают вместе, чтобы обеспечить прочность и здоровье костей.Плотность костной ткани зависит от:

  • Постоянное поступление диетического кальция
  • Достаточное количество витамина D из солнечного света и еды
  • Здоровая диета с большим количеством витаминов и минералов
  • Различные гормоны, включая паратиреоидный гормон, гормон роста, кальцитонин, эстроген и тестостерон
  • Регулярные упражнения с отягощением.

Состояние костей

Некоторые состояния костей включают:

  • Переломы — переломы костей различных типов
  • Остеопороз — потеря плотности и прочности кости
  • Остеомиелит — инфицирование кости
  • Остеит
    — воспаление костей, например, костная болезнь Педжета
  • Акромегалия — разрастание костей лица, рук и ног
  • Фиброзная дисплазия — аномальный рост или отек кости
  • — рахит растущие кости ребенка не развиваются из-за недостатка витамина D
  • Множественная миелома — рак плазматических клеток в костном мозге
  • Рак кости — первичный рак кости включает остеосаркомы и хондросаркомы.Однако большинство раковых образований, обнаруживаемых в костях, распространилось из других органов, таких как грудь, простата, легкие или почки.

Куда обратиться за помощью

Анатомия костей | Спросите у биолога

Основы костей и анатомия костей


Вы когда-нибудь видели окаменелые останки динозавров и древних человеческих костей в учебниках, на телевидении или лично в музее? На них легко смотреть и думать о костях как о сухих мертвых палках в вашем теле, но это далеко от истины.Кости состоят из активных живых клеток, которые растут, восстанавливают себя и взаимодействуют с другими частями тела. Давайте внимательнее посмотрим, что делают ваши кости и как они это делают.

Сколько костей в теле человека?


Скелет взрослого человека состоит из 206 костей самых разных форм и размеров. В совокупности ваши кости составляют около 15% веса вашего тела. Новорожденные дети на самом деле рождаются с гораздо большим количеством костей, чем это (около 300), но многие кости срастаются или срастаются по мере того, как дети становятся старше.Некоторые кости длинные и толстые, как бедренные кости. Другие тонкие, плоские и широкие, как лопатки.

Скелет взрослого человека состоит из 206 костей. Кликните на картинку чтобы открыть ее в полный размер.

Опора: Подобно тому, как дом построен вокруг поддерживающего каркаса, для поддержки остальной части человеческого тела требуется прочный каркас. Без костей вашему телу было бы сложно сохранять форму и стоять в вертикальном положении.

Защита: Кости образуют прочный слой вокруг некоторых органов вашего тела, помогая защитить их, когда вы падаете или получаете травму.Например, грудная клетка действует как щит вокруг груди, защищая важные внутренние органы, такие как легкие и сердце. Ваш мозг — еще один орган, который нуждается в большой защите. Толстый слой кости черепа защищает ваш мозг. Для этого очень хорошо быть «тупоголовым».

Механизм: Многие из ваших костей складываются вместе, как кусочки пазла. Каждая кость имеет очень специфическую форму, которая часто совпадает с соседними костями. Место, где встречаются две кости, позволяя вашему телу сгибаться, называется суставом.

Сколько разных способов вы можете двигать суставами? Некоторые кости, например локоть, соединяются вместе, как шарнир, который позволяет вам сгибать руку в одном определенном направлении. Другие кости соединяются вместе, как шар и впадина, например, сустав между плечом и рукой. Этот тип сустава позволяет вам вращать плечом во многих направлениях или вращать им по кругу, как это делают питчеры для софтбола.

Движение нашего тела возможно благодаря как суставам, так и мышцам. Мышцы часто прикрепляются к двум разным костям, поэтому, когда мышца сгибается и укорачивается, кости двигаются.Это позволяет сгибать руки в локтях и коленях или поднимать предметы. В скелете много суставов, но без мускулов нет ничего, что могло бы тянуть кости в разные стороны. Более половины костей вашего тела на самом деле расположены в ваших руках и ногах. Эти кости прикреплены ко многим маленьким мышцам, которые дают вам очень точный контроль над тем, как вы двигаете пальцами и ступнями.

Примеры различных суставов вашего тела.

Образование кровяных телец: Знаете ли вы, что большинство красных и белых кровяных телец в вашем теле были созданы внутри ваших костей? Это делается с помощью специальной группы клеток, называемых стволовыми клетками, которые в основном находятся в костном мозге, который является самым внутренним слоем ваших костей.

Хранение: Кости похожи на склад, в котором хранятся жир и многие важные минералы, поэтому они доступны, когда они нужны вашему организму. Эти минералы постоянно перерабатываются в ваших костях — откладываются, а затем выводятся и перемещаются по кровотоку, чтобы добраться до других частей вашего тела, где они необходимы.

Поперечный разрез кости.

Из чего сделаны ваши кости?


Теперь, когда вы знаете, что делают кости, давайте посмотрим, из чего они сделаны и какова их анатомия.

Каждая кость в вашем теле состоит из трех основных типов костного материала: компактной кости, губчатой ​​кости и костного мозга.

Поперечное сечение остеонов. Большие темные пятна — это проходы для кровеносных сосудов и нервов. Маленькие черные точки — это остеоциты.

Компактная кость

Компактная кость — это самый тяжелый и самый твердый тип кости. Он должен быть очень сильным, поскольку он поддерживает ваше тело и мышцы при ходьбе, беге и движении в течение дня. Около 80% кости в вашем теле компактны.Он составляет внешний слой кости, а также помогает защитить более хрупкие внутренние слои.

Если бы вы посмотрели на кусок компактной кости без помощи микроскопа, он бы казался полностью твердым. Однако если вы посмотрите на него в микроскоп, вы увидите, что на самом деле он заполнен множеством очень крошечных проходов или каналов для нервов и кровеносных сосудов. Компактная кость состоит из особых клеток, называемых остеоцитами. Эти клетки выстроены кольцами вокруг каналов.Вместе канал и окружающие его остеоциты называются остеонами. Остеоны похожи на толстые трубки, идущие в одном направлении внутри кости, они похожи на пучок соломинок с кровеносными сосудами, венами и нервами в центре.

При изучении остеонов в кости (A) под микроскопом можно обнаружить трубчатые остеоны (B), состоящие из остеоцитов (C). Эти костные клетки имеют длинные ответвления (D), которые позволяют им общаться с другими клетками.

Губчатая кость

Губчатая кость крупным планом.

Губчатая кость находится в основном на концах костей и суставов. Около 20% костей в вашем теле губчатые. В отличие от компактной кости, которая в основном твердая, губчатая кость полна открытых участков, называемых порами. Если вы посмотрите на него под микроскопом, он будет очень похож на вашу кухонную губку. Поры заполнены костным мозгом, нервами и кровеносными сосудами, которые переносят клетки и питательные вещества в кость и из нее. Хотя губчатая кость может напоминать кухонную губку, эта кость довольно твердая и твердая и совсем не мягкая.

Костный мозг

Внутренняя часть ваших костей заполнена мягкой тканью, называемой костным мозгом. Костный мозг бывает двух типов: красный и желтый. Красный костный мозг — это место, где производятся все новые красные кровяные тельца, белые кровяные тельца и тромбоциты. Тромбоциты — это маленькие кусочки клеток, которые помогают остановить кровотечение при порезе. Красный костный мозг находится в центре плоских костей, таких как лопатки и ребра. Желтый костный мозг состоит в основном из жира и находится в полых центрах длинных костей, таких как бедренные кости.Он не производит клетки крови или тромбоциты. И желтый, и красный костный мозг имеют множество мелких и крупных кровеносных сосудов и вен, проходящих через них, чтобы питательные вещества и отходы попадали в кость и выходили из нее.

Когда вы родились, весь костный мозг в вашем теле был красным костным мозгом, из которого образовывалось множество клеток крови и тромбоцитов, помогающих вашему телу расти. По мере того, как вы становитесь старше, все больше и больше красного костного мозга заменяется желтым костным мозгом. Костный мозг взрослых взрослых примерно наполовину красный, наполовину желтый.

The Inside Story

Кости состоят из четырех основных типов клеток: остеокластов, остеобластов, остеоцитов и выстилающих клеток. Обратите внимание, что имена трех из этих типов клеток начинаются с «остео». Это греческое слово, обозначающее кость. Когда вы видите слово «остео» как часть слова, это дает вам понять, что это слово имеет какое-то отношение к костям.

Остеобласты отвечают за образование новых костей по мере роста вашего тела.Они также восстанавливают существующие кости, когда они сломаны. Вторая часть слова «взрыв» происходит от греческого слова, означающего «рост». Чтобы создать новую кость, многие остеобласты объединяются в одном месте, а затем начинают образовывать гибкий материал, называемый остеоидом. Затем в остеоид добавляют минералы, делая его прочным и твердым. Когда остеобласты заканчивают формировать кость, они становятся либо выстилающими клетками, либо остеоцитами.

Остеоциты представляют собой звездообразные костные клетки, наиболее часто встречающиеся в компактной кости.На самом деле это старые остеобласты, которые перестали образовывать новые кости. По мере того, как остеобласты наращивают кость, они накапливают ее вокруг себя, а затем застревают в центре. На данный момент они называются остеоцитами. Остеоциты имеют длинные ветвящиеся ветви, которые соединяют их с соседними остеоцитами. Это позволяет им обмениваться минералами и общаться с другими клетками в этом районе.

Клетки выстилки — клетки очень плоской кости. Они покрывают внешнюю поверхность всех костей и также образованы из остеобластов, которые закончили создание костного материала.Эти клетки играют важную роль в управлении движением молекул в кости и из кости.

Остеокласты разрушают и реабсорбируют существующую кость. Вторая часть слова «обломок» происходит от греческого слова «разрыв», означающего, что эти клетки разрушают костный материал. Остеокласты очень большие и часто содержат более одного ядра, что происходит, когда две или более клетки сливаются вместе. Эти клетки работают вместе с остеобластами, изменяя форму костей.Это может произойти по ряду причин:

  • Когда кость ломается, в процессе заживления вокруг разрыва образуется толстый кусок кости, называемый твердой мозолью. Костная мозоль медленно разрушается остеокластами, пока кость не вернется к своей первоначальной форме.
  • Когда в определенной области необходимы новые кровеносные сосуды, нервы и вены, остеокласты разрушают костный материал, чтобы создать новые проходы.
  • Кости, которые используются чаще и которым необходимо выдерживать больший вес, например, кости спортсменов, со временем становятся толще и сильнее.Кости, которые используются реже, например те, которые нужно накладывать на гипс на длительное время, ломаются, становятся меньше и тоньше.

Не совсем понятно, как костные клетки в вашем теле могут работать вместе и оставаться организованными, но давление и нагрузка на кость могут иметь какое-то отношение к этому.

Bone Facts

Самая маленькая кость в человеческом теле, называемая костью стремени, расположена глубоко внутри уха.У взрослого человека его длина составляет всего около 3 миллиметров.

Самая длинная кость человека называется бедренной костью или бедренной костью. Это кость в ноге, которая идет от бедра до колена. У среднего взрослого это около 20 дюймов в длину.


Ссылки :

Marieb. E.N. (1989) Анатомия и физиология человека, CA: Benjamin / Cummings Publishing Company, Inc

Heller, HC, Orians, GH, Purves, WK, Sadava, D. (2003) Life: The Science of Biology, 7th Edition . Сандерленд, Массачусетс: Sinauer Associates, Inc. и У. Х. Фриман и компания

Изображение скелета: Леди шляп — Мариана Руис Вильярреал, через Wikimedia Commons.

14.4: Структура кости — Biology LibreTexts

  1. Последнее обновление
  2. Сохранить как PDF
  1. Жареный костный мозг
  2. Анатомия кости
    1. Типы костной ткани
    2. Другие костные ткани
    3. Костные клетки
  3. Микроскопическая анатомия компактной кости
  4. Типы костей
  5. Обзор
  6. Надежные источники 9025
  7. Узнать больше
  8. Атрибуты
Жареный костный мозг

Вы узнаете еду в верхнем левом углу этой фотографии на Рисунке \ (\ PageIndex {1} \)? Это жареный костный мозг, который все еще находится внутри костей.В некоторых кухнях это считается деликатесом. Костный мозг — это тип ткани, который содержится во многих костях животных, включая наши собственные. Это мягкие ткани, которые у взрослых могут быть в основном жирными. Прочитав эту концепцию, вы узнаете больше о костном мозге и других тканях, из которых состоят кости.

Рисунок \ (\ PageIndex {1} \): Жареный костный мозг

Кости — это органы, состоящие в основном из костной ткани, также называемой костной тканью. Костная ткань — это тип соединительной ткани, состоящей в основном из коллагеновой матрицы, минерализованной кристаллами кальция и фосфора.Комбинация гибкого коллагена и твердых минеральных кристаллов делает костную ткань твердой, но не ломкой.

Анатомия кости

В костях имеется несколько различных типов тканей, в том числе два типа костных тканей.

Типы костной ткани

Два разных типа костной ткани — это компактная костная ткань (также называемая твердой или кортикальной костью), ткань и губчатая костная ткань (также называемая губчатой ​​или губчатой ​​костью).

Рисунок \ (\ PageIndex {2} \): Кости внутри сложнее, чем можно было бы ожидать по их внешнему виду.В полой части длинной кости находится костный мозг. Внешняя граница кости состоит из плотной костной ткани, а от концов, а остальная часть внутренней части кости состоит из губчатой ​​или губчатой ​​костной ткани. Кость покрыта соединительной тканью, называемой надкостницей.

Компактная костная ткань образует чрезвычайно твердый внешний слой кости. Кортикальная костная ткань придает кости гладкий, плотный и прочный вид. На его долю приходится около 80 процентов общей костной массы скелета взрослого человека. Губчатая костная ткань заполняет часть или всю внутреннюю часть многих костей. Как следует из названия, губчатая кость пористая, как губка, и содержит неравномерную сеть пространств. Это делает губчатую кость намного менее плотной, чем компактную кость. Губчатая кость имеет большую площадь поверхности, чем кортикальная кость, но составляет только 20 процентов костной массы.

Как компактная, так и губчатая костные ткани имеют одинаковые типы клеток, но они различаются расположением клеток. Клетки в компактной кости расположены в нескольких микроскопических столбцах, тогда как клетки в губчатой ​​кости расположены в более рыхлой и открытой сети.Эти клеточные различия объясняют, почему кортикальные и губчатые костные ткани имеют такую ​​разную структуру.

Другие костные ткани

Помимо кортикальных и губчатых костных тканей, кости содержат несколько других тканей, включая кровеносные сосуды и нервы. Кроме того, кости содержат костный мозг и надкостницу. Вы можете увидеть эти ткани на рисунке \ (\ PageIndex {2} \).

  • Костный мозг — это мягкая соединительная ткань, которая находится внутри полости, называемой полостью костного мозга.У взрослых есть два типа костного мозга: желтый костный мозг, который в основном состоит из жира, и красный костный мозг. У новорожденных весь костный мозг красный, но к зрелому возрасту большая часть красного костного мозга превратилась в желтый костный мозг. У взрослых красный костный мозг находится в основном в бедренной кости, ребрах, позвонках и костях таза. Красный костный мозг содержит гемопоэтические стволовые клетки, которые в процессе кроветворения дают начало эритроцитам, лейкоцитам и тромбоцитам.
  • Надкостница — это прочная фиброзная оболочка, покрывающая внешнюю поверхность костей.Он обеспечивает защитное покрытие кортикальной костной ткани. Это также источник новых костных клеток.

Костные клетки

Как показано на рисунке \ (\ PageIndex {3} \), костные ткани состоят из четырех различных типов костных клеток: остеобластов, остеоцитов, остеокластов и остеогенных клеток.

  • Остеобласты — это костные клетки с одним ядром, которые образуют и минерализуют костный матрикс. Они образуют белковую смесь, состоящую в основном из коллагена и составляющую органическую часть матрикса.Они также выделяют ионы кальция и фосфата, которые образуют минеральные кристаллы в матрице. Кроме того, они производят гормоны, которые также играют роль в минерализации матрикса.
  • Остеоциты — это в основном неактивные костные клетки, которые образуются из остеобластов, которые оказались захваченными в их собственном костном матриксе. Остеоциты помогают регулировать образование и разрушение костной ткани. У них есть множественные клеточные проекции, которые, как считается, участвуют в коммуникации с другими костными клетками.
  • Остеокласты — это костные клетки с множеством ядер, которые резорбируют костную ткань и разрушают кость. Они растворяют минералы в костях и высвобождают их в кровь.
  • Остеогенные клетки представляют собой недифференцированные стволовые клетки. Это единственные костные клетки, которые могут делиться. Когда они это делают, они дифференцируются и развиваются в остеобласты.

Кость — очень активная ткань. Он постоянно реконструируется под действием остеобластов и остеокластов.Остеобласты постоянно образуют новую кость, а остеокласты продолжают разрушать кость. Это позволяет производить незначительное восстановление костей, а также гомеостаз минеральных ионов в крови.

Рисунок \ (\ PageIndex {3} \): разные типы костных клеток выполняют разные функции.

Микроскопическая анатомия компактной кости

Рисунок \ (\ PageIndex {4} \): Макроскопические и микроскопические структуры компактной костной ткани.

Основной микроскопической единицей кости является остеон (или гаверсова система). Остеоны представляют собой структуры примерно цилиндрической формы, которые могут иметь длину несколько миллиметров и около нуля.2 мм в диаметре. Каждый остеон состоит из пластинок плотной костной ткани, окружающих центральный канал (гаверсовский канал). В гаверсовском канале есть запасы крови для кости. Граница остеона называется цементной линией. Остеоны могут быть устроены в виде тканой кости или пластинчатой ​​кости. Остеобласты делают костный матрикс, который кальцифицируется, затвердевает. Это захватывает зрелые костные клетки, остеоциты, в небольшую камеру, называемую лакунами. Остеоциты получают питание из центрального (гаверсовского) канала через небольшие каналы, называемые канальцами.Все эти и другие структуры видны на рисунке \ (\ PageIndex {4} \).

Типы костей

В теле человека существует шесть типов костей в зависимости от их формы или расположения: длинные, короткие, плоские, сесамовидные, шовные и неправильные кости. Вы можете увидеть пример каждого типа кости на рисунке \ (\ PageIndex {5} \).

  • Длинные кости характеризуются стержнем, который намного длиннее, чем его ширина, и закругленными головками на каждом конце стержня. Длинные кости состоят в основном из компактной кости с меньшим количеством губчатой ​​кости и костного мозга.Большинство костей конечностей, включая кости пальцев рук и ног, представляют собой длинные кости.
  • Короткие кости имеют примерно кубическую форму и имеют только тонкий слой кортикальной кости, окружающий внутреннюю губчатую кость. Кости запястий и лодыжек — короткие кости.
  • Плоские кости тонкие и, как правило, изогнутые, с двумя параллельными слоями компактной кости, между которыми находится слой губчатой ​​кости. Большинство костей черепа — плоские кости, как и грудина (грудная кость).
  • Сесамовидные кости встроены в сухожилия, соединительные ткани, которые связывают мышцы с костями.Сесамовидные кости удерживают сухожилия дальше от суставов, поэтому угол между ними увеличивается, что увеличивает нагрузку на мышцы. Коленная чашечка (коленная чашечка) является примером сесамовидной кости.
  • Шовные кости — это очень маленькие кости, которые расположены между основными костями черепа, внутри суставов (швов) между более крупными костями. Они не всегда присутствуют.
  • Кости неправильной формы — это кости, не подпадающие ни под одну из вышеперечисленных категорий. Обычно они состоят из тонких слоев кортикальной кости, окружающих губчатую внутреннюю часть кости.Их формы неправильные и сложные. Примеры неправильных костей включают позвонки и кости таза.
Рисунок \ (\ PageIndex {5} \): шесть типов костей, классифицированных по форме или расположению.

Функция: надежные источники

Больной или поврежденный костный мозг можно заменить донорскими клетками костного мозга, которые помогают лечить и часто вылечить многие опасные для жизни состояния, включая лейкемию, лимфому, серповидно-клеточную анемию и талассемию. Если пересадка костного мозга прошла успешно, новый костный мозг начнет вырабатывать здоровые клетки крови и улучшит состояние пациента.

Узнайте больше о донорстве костного мозга и подумайте, не стоит ли делать это самостоятельно. Найдите надежные источники, чтобы ответить на следующие вопросы:

  1. Как стать потенциальным донором костного мозга?
  2. Кто может, а кто не может сдавать костный мозг?
  3. Как осуществляется донорство костного мозга?
  4. Какие риски существуют при донорстве костного мозга?

Обзор

  1. Опишите костную ткань.
  2. Почему кости твердые, но не хрупкие?
  3. Сравните и сопоставьте два основных типа костной ткани.
  4. Какие некостные ткани находятся в костях?
  5. Перечислите четыре типа костных клеток и их функции.
  6. Определите шесть типов костей и приведите примеры каждого типа.
  7. Верно или неверно. Губчатая костная ткань — это еще одно название костного мозга.
  8. Верно или неверно. Надкостница покрывает костную ткань.
  9. Сравните и сравните желтый костный мозг и красный костный мозг.
  10. Какая кость в основном состоит из кортикальной костной ткани?

    А.Таз

    Б. Позвонки

    C. бедренная кость

    Д. Карпал

  11. а. Какой тип костных клеток делится, чтобы произвести новые костные клетки?

    г. Где находится этот тип клеток?

  12. Откуда берутся остеобласты и остеоциты и как они связаны друг с другом?
  13. Какой тип кости встроен в сухожилия?
  14. Верно или неверно. Кальций — единственный минерал в костях.

Узнать больше

Посмотрите это увлекательное и динамичное видео ускоренного курса, чтобы глубже изучить структуру костей:

Посмотрите это видео, чтобы узнать больше о ремоделировании костей:

Костная ткань и скелетная система

Рисунок 6.1. Ребенок смотрит на кости
Кость — это живая ткань. В отличие от костей окаменелостей, ставших инертными в результате процесса минерализации, детские кости будут продолжать расти и развиваться, внося свой вклад в поддержку и функционирование других систем организма.(кредит: Джеймс Эмери)

Введение

Цели обучения

  • Перечислить и описать функции костей
  • Опишите классы костей
  • Обсудить процесс формирования и развития костей
  • Объясните, как кость восстанавливается после перелома
  • Обсудить влияние упражнений, питания и гормонов на костную ткань
  • Опишите, как дисбаланс кальция может повлиять на костную ткань

Из костей получаются хорошие окаменелости.В то время как мягкие ткани некогда живого организма со временем распадутся и отпадут, костная ткань при правильных условиях подвергнется процессу минерализации, эффективно превращая кость в камень. Хорошо сохранившийся ископаемый скелет может дать нам хорошее представление о размере и форме организма, так же как ваш скелет помогает определить ваш размер и форму. Однако, в отличие от ископаемого скелета, ваш скелет представляет собой структуру из живой ткани, которая растет, восстанавливается и обновляется. Кости внутри него — это динамичные и сложные органы, которые выполняют ряд важных функций, включая некоторые необходимые для поддержания гомеостаза.

Функции скелетной системы

Цели обучения

  • Определите кость, хрящ и скелетную систему
  • Перечислите и опишите функции костной системы

Кость , или костная ткань , представляет собой твердую плотную соединительную ткань, которая формирует большую часть скелета взрослого человека, поддерживающую структуру тела. В областях скелета, где движутся кости (например, грудная клетка и суставы), хрящ , полужесткая форма соединительной ткани, обеспечивает гибкость и гладкие поверхности для движения.Скелетная система представляет собой систему тела, состоящую из костей, хрящей и суставов или суставов, и выполняет следующие важнейшие функции для человеческого тела:

  • поддерживает корпус
  • облегчает передвижение
  • защищает внутренние органы
  • производит клетки крови
  • накапливает и высвобождает минералы и жиры

Поддержка, движение и защита

Наиболее очевидные функции скелетной системы — это грубые функции, видимые при наблюдении.Просто взглянув на человека, вы увидите, как кости поддерживают, облегчают движение и защищают человеческое тело.

Подобно тому, как стальные балки здания служат каркасом, выдерживающим его вес, кости и хрящи вашей скелетной системы составляют каркас, поддерживающий остальную часть вашего тела. Без скелетной системы вы были бы вялой массой органов, мышц и кожи.

Кости также облегчают движение, выступая в качестве точек прикрепления ваших мышц. В то время как некоторые кости служат только опорой для мышц, другие также передают силы, возникающие при сокращении ваших мышц.С механической точки зрения кости действуют как рычаги, а суставы служат опорами (рис. 6.2). Если мышца не охватывает сустав и не сокращается, кость не будет двигаться. Для получения информации о взаимодействии скелетной и мышечной систем, то есть опорно-двигательного аппарата, обратитесь к дополнительному контенту.

Рисунок 6.2. Движение поддержки костей
Кости действуют как рычаги, когда мышцы охватывают сустав и сокращаются. (кредит: Бенджамин Дж. ДеЛонг)

Кости также защищают внутренние органы от повреждений, покрывая их или окружая их.Например, ребра защищают легкие и сердце, кости позвоночника (позвоночник) защищают спинной мозг, а кости черепа (черепа) защищают мозг (рис. 6.3).

Рисунок 6.3. Кости защищают мозг
Череп полностью окружает и защищает мозг от нетравматических повреждений.

Карьера: ортопед

ортопед — врач, специализирующийся на диагностике и лечении заболеваний и травм, связанных с опорно-двигательной системой.Некоторые ортопедические проблемы можно лечить с помощью лекарств, упражнений, подтяжек и других приспособлений, но другие лучше всего лечить хирургическим путем (рис. 6.4).

Рисунок 6.4. Распорка руки
Ортопед иногда прописывает использование корсета, который укрепляет нижележащую костную структуру, для поддержки которой он используется. (Источник: Юхан Сонин)

Хотя происхождение слова «ортопедия» (ortho- = «прямой»; paed- = «ребенок») буквально означает «выпрямление ребенка», у ортопедов могут быть пациенты от педиатров до гериатров.В последние годы ортопеды даже выполнили пренатальные операции по исправлению расщелины позвоночника, врожденного дефекта, при котором нервный канал в позвоночнике плода не закрывается полностью во время эмбриологического развития.

Ортопеды обычно лечат травмы костей и суставов, но они также лечат другие заболевания костей, включая искривление позвоночника. Боковое искривление (сколиоз) может быть достаточно серьезным, чтобы проскользнуть под лопатку (лопатку), заставляя ее подниматься вверх в виде горба. Искривления позвоночника также могут быть чрезмерными дорсовентрально (кифоз), вызывая сгибание спины и сдавление грудной клетки.Эти искривления часто появляются у детей раннего возраста в результате неправильной осанки, аномального роста или неопределенных причин. В основном их легко лечат ортопеды. С возрастом накопленные травмы позвоночника и такие заболевания, как остеопороз, также могут приводить к искривлению позвоночника, отсюда сутулость, которую вы иногда наблюдаете у пожилых людей.

Некоторые ортопеды специализируются на спортивной медицине, которая занимается как простыми травмами, такими как растяжение лодыжки, так и сложными травмами, такими как разрыв вращательной манжеты плеча.Лечение может варьироваться от физических упражнений до операции.

Хранение минералов, накопление энергии и кроветворение

На метаболическом уровне костная ткань выполняет несколько важнейших функций. Во-первых, костный матрикс действует как резервуар для ряда минералов, важных для функционирования организма, особенно кальция и калия. Эти минералы, включенные в костную ткань, могут высвобождаться обратно в кровоток для поддержания уровней, необходимых для поддержания физиологических процессов.Ионы кальция, например, необходимы для сокращения мышц и контроля потока других ионов, участвующих в передаче нервных импульсов.

Кость также служит местом для хранения жира и производства клеток крови. Более мягкая соединительная ткань, заполняющая большую часть кости, называется костным мозгом (рис. 6.5). Есть два типа костного мозга: желтый и красный. Желтый костный мозг содержит жировую ткань; Триглицериды, хранящиеся в адипоцитах ткани, могут служить источником энергии. Красный костный мозг — это место, где кроветворение — производство клеток крови. Красные кровяные тельца, лейкоциты и тромбоциты производятся в красном костном мозге.

Рисунок 6.5. Головка бедренной кости с красным и желтым костным мозгом
Головка бедренной кости содержит как желтый, так и красный костный мозг. Желтый кабачок накапливает жир. Красный костный мозг отвечает за кроветворение. (кредит: модификация работы «stevenfruitsmaak» / Wikimedia Commons)

Костная ткань и скелетная система

Рисунок 5.1. Ребенок смотрит на кости
Кость — это живая ткань. В отличие от костей окаменелостей, ставших инертными в результате процесса минерализации, детские кости будут продолжать расти и развиваться, внося свой вклад в поддержку и функционирование других систем организма. (кредит: Джеймс Эмери)

Введение

Из костей получаются хорошие окаменелости. В то время как мягкие ткани некогда живого организма со временем распадутся и отпадут, костная ткань при правильных условиях подвергнется процессу минерализации, эффективно превращая кость в камень.Хорошо сохранившийся ископаемый скелет может дать нам хорошее представление о размере и форме организма, так же как ваш скелет помогает определить ваш размер и форму. Однако, в отличие от ископаемого скелета, ваш скелет представляет собой структуру из живой ткани, которая растет, восстанавливается и обновляется. Кости внутри него — это динамичные и сложные органы, которые выполняют ряд важных функций, включая некоторые необходимые для поддержания гомеостаза.

Функции скелетной системы

Кость , или костная ткань , представляет собой твердую плотную соединительную ткань, которая формирует большую часть скелета взрослого человека, поддерживающую структуру тела.В областях скелета, где движутся кости (например, грудная клетка и суставы), хрящ , полужесткая форма соединительной ткани, обеспечивает гибкость и гладкие поверхности для движения. Скелетная система — это система тела, состоящая из костей и хрящей и выполняющая следующие важнейшие функции для человеческого тела:

  • поддерживает корпус
  • облегчает передвижение
  • защищает внутренние органы
  • производит клетки крови
  • накапливает и высвобождает минералы и жиры

Поддержка, движение и защита

Наиболее очевидные функции скелетной системы — это грубые функции, видимые при наблюдении.Просто взглянув на человека, вы увидите, как кости поддерживают, облегчают движение и защищают человеческое тело.

Подобно тому, как стальные балки здания служат каркасом, выдерживающим его вес, кости и хрящи вашей скелетной системы составляют каркас, поддерживающий остальную часть вашего тела. Без скелетной системы вы были бы вялой массой органов, мышц и кожи.

Кости также облегчают движение, выступая в качестве точек прикрепления ваших мышц. В то время как некоторые кости служат только опорой для мышц, другие также передают силы, возникающие при сокращении ваших мышц.С механической точки зрения кости действуют как рычаги, а суставы служат опорами (рис. 5.2). Если мышца не охватывает сустав и не сокращается, кость не будет двигаться. Для получения информации о взаимодействии скелетной и мышечной систем, то есть опорно-двигательного аппарата, обратитесь к дополнительному контенту.

Рисунок 5.2. Движение поддержки костей
Кости действуют как рычаги, когда мышцы охватывают сустав и сокращаются. (кредит: Бенджамин Дж. ДеЛонг)

Кости также защищают внутренние органы от повреждений, покрывая их или окружая их.Например, ребра защищают легкие и сердце, кости позвоночника (позвоночник) защищают спинной мозг, а кости черепа (черепа) защищают мозг (рис. 5.3).

Рисунок 5.3. Кости защищают мозг
Череп полностью окружает и защищает мозг от нетравматических повреждений.

Хранение минералов, накопление энергии и кроветворение

На метаболическом уровне костная ткань выполняет несколько важнейших функций.Во-первых, костный матрикс действует как резервуар для ряда минералов, важных для функционирования организма, особенно кальция и калия. Эти минералы, включенные в костную ткань, могут высвобождаться обратно в кровоток для поддержания уровней, необходимых для поддержания физиологических процессов. Ионы кальция, например, необходимы для сокращения мышц и контроля потока других ионов, участвующих в передаче нервных импульсов.

Кость также служит местом для хранения жира и производства клеток крови.Более мягкая соединительная ткань, заполняющая большую часть кости, называется костным мозгом (рис. 5.5). Есть два типа костного мозга: желтый и красный. Желтый костный мозг содержит жировую ткань; Триглицериды, хранящиеся в адипоцитах ткани, могут служить источником энергии. Красный костный мозг — это место, где кроветворение — производство клеток крови. Красные кровяные тельца, лейкоциты и тромбоциты производятся в красном костном мозге.

Рисунок 5.5. Головка бедренной кости с красным и желтым костным мозгом
Головка бедренной кости содержит как желтый, так и красный костный мозг. Желтый кабачок накапливает жир. Красный костный мозг отвечает за кроветворение. (кредит: модификация работы «stevenfruitsmaak» / Wikimedia Commons)
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *